您的位置: 专家智库 > >

国家自然科学基金(21137003)

作品数:7 被引量:40H指数:4
发文基金:国家自然科学基金国家重点基础研究发展计划更多>>
相关领域:环境科学与工程理学更多>>

文献类型

  • 7篇期刊文章
  • 1篇会议论文

领域

  • 8篇环境科学与工...
  • 1篇化学工程
  • 1篇一般工业技术
  • 1篇理学

主题

  • 2篇纳米
  • 2篇PHENAN...
  • 2篇PLANT
  • 2篇BIODEG...
  • 1篇单壁
  • 1篇单壁碳纳米管
  • 1篇氧化钛
  • 1篇阴离子
  • 1篇阴离子表面活...
  • 1篇英文
  • 1篇生物效应
  • 1篇水稻
  • 1篇碳纳米管
  • 1篇团聚
  • 1篇离子
  • 1篇纳米二氧化钛
  • 1篇纳米管
  • 1篇活性剂
  • 1篇含氧官能团
  • 1篇二氧化钛

机构

  • 1篇浙江大学

作者

  • 1篇朱利中

传媒

  • 5篇Journa...
  • 1篇Scienc...
  • 1篇Journa...

年份

  • 2篇2016
  • 3篇2014
  • 3篇2013
7 条 记 录,以下是 1-8
排序方式:
Effect of surfactant on phenanthrene metabolic kinetics by Citrobacter sp. SA01被引量:5
2014年
To attain a better understanding of the effects of surfactants on the metabolic kinetics of hydrophobic organic compounds, the biodegradation of phenanthrene by Citrobacter sp. SA01 was investigated in a batch experiment containing Tween 80, sodium dodecyl benzene sulfonate and liquid mineral salt medium. The Monod model was modified to effectively describe the partition, phenanthrene biodegradation and biopolymer production. The results showed that Tween 80 and sodium dodecyl benzene sulfonate (each at 50 rag/L) enhanced phenanthrene metabolism and poly-β-hydroxybutyrate production as indicated by the increasing amounts of intermediates Coy 17.2% to 47.9%), and percentages of poly-β- hydroxybutyrate (by 107.3% and 33.1%) within the cell dry weight when compared to their absence. The modified Monod model was capable of predicting microbial growth, phenanthrene depletion and biopolymer production. Furthermore, the Monod kinetic coefficients were largely determined by the surfactant-enhanced partition, suggesting that partitioning is a critical process in surfactant-enhanced bioremediation of hydro- phobic organic compounds.
Feng LiLizhong ZhuDong Zhang
单壁碳纳米管在阴离子表面活性剂溶液中的分散悬浮和团聚沉降性能研究(英文)被引量:1
2014年
研究目的:纳米颗粒在水中的悬浮和团聚性能是决定它们在环境中迁移行为及潜在健康和环境风险影响范围的关键。表面活性剂不仅在环境中普遍存在,而且是工业制备纳米颗粒稳定悬浮液的主要分散剂。本文以单壁纳米碳管为代表,研究震荡扰动及稀释等模拟环境条件下其在阴离子表面活性剂溶液中的分散悬浮和团聚沉降性能,为评价纳米颗粒排放进入环境后的潜在风险提供依据。创新要点:现有研究认为,纳米颗粒由于能在水中稳定悬浮,其排放到环境中会产生长距离迁移并存在造成大范围污染的可能性和生态健康风险。在本文中,震荡扰动及稀释等模拟环境条件的研究表明,单壁碳纳米管在环境中长距离迁移并造成大范围污染的可能性和风险较小。研究方法:通过比较震荡扰动(模拟环境条件)和超声辅助两种分散悬浮方式及有无添加十二烷基苯磺酸钠(SDBS)阴离子表面活性剂条件下的单壁碳纳米管在水中的悬浮性能(图1),研究单壁碳纳米管能否在环境中被分散悬浮。通过研究Na+,K+,Ca2+和Mg2+等环境主要阳离子存在时SDBS稳定悬浮的单壁碳纳米管悬浮性能及与SDBS浓度等的相关性(图6和8),探明稳定悬浮的单壁碳纳米管能否在环境稀释过程中和环境阳离子存在下保持稳定悬浮。重要结论:在超声辅助下,单壁碳纳米管可以在SDBS阴离子表面活性剂溶液中稳定分散悬浮,但不能在水中稳定分散悬浮。在无超声辅助、仅通过机械震荡的情况下,单壁碳纳米管无法在水中和SDBS溶液中稳定分散悬浮。对于已经在SDBS溶液中稳定悬浮的单壁碳纳米管,它们在Na+,K+,Ca2+和Mg2+等环境主要阳离子存在时也会脱稳形成团聚沉降,且该团聚沉降行为取决于悬浮溶液中SDBS的浓度。当SDBS稳定悬浮的单壁碳纳米管在环境中被稀释时,SDBS浓度被稀释降低,会迅速导致单壁碳纳米管团聚沉降�
Kun YANGZi-li YIQing-feng JINGDao-hui LIN
关键词:阴离子表面活性剂超声
Utilizing surfactants to control the sorption,desorption, and biodegradation of phenanthrene in soil-water system被引量:4
2013年
An integrative technology including the surfactant enhanced sorption and subsequentdesorption and biodegradation of phenanthrene in the soil-water system was introduced and tested. For slightly contaminated agricultural soils, cationic-nonionic mixed surfactant- enhanced sorption of organic contaminants onto soils could reduce their transfer to plants, therefore safe-guarding agricultural production. After planting, residual surfactants combined with added nonionic surfactant could also promote thedesorption and biodegradation of residual phenanthrene, thus providing a cost-effective pollution remediation technology.0ur results showed that the cationic-nonionic mixed surfactantsdodecylpyridinium bromide (DDPB) and Triton X-100 (TX100) significantly enhanced soil retention of phenanthrene. The maximum sorption coefficient Kd* of phenanthrene for contaminated soils treated by mixed surfactants was about24.5 times that of soils without surfactant (Kd ) and higher than the combined effects of DDPB and TX100 individually, which was about 16.7 and 1.5 times Kd , respectively.0n the other hand, TX100 could effectively remove phenanthrene from contaminated soils treated by mixed surfactants, improving the bioavailability of organic pollutants. Thedesorption rates of phenanthrene from these treated soils were greater than 85% with TX100 concentration above2000 mg/L and approached 100% with increasing TX100 concentration. The biodegradation rates of phenanthrene in the presence of surfactants reached over 95% in30days. The mixed surfactants promoted the biodegradation of phenanthrene to some extent in 10-22days, and had no obvious impact on phenanthrene biodegradation at the end of the experiment. Results obtained from this study provide some insight for the production of safe agricultural products and a remediation scheme for soils slightly contaminated with organic pollutants.
Haiwei JinWenjun ZhouLizhong Zhu
关键词:PHENANTHRENE
纳米二氧化钛在水稻中的传输与生物效应
纳米二氧化钛(TiO NPs)是目前使用最广泛的纳米材料之一。TiO NPs进入环境(浓度0.1-1000 ppm)后[1]可能会对植物、微生物等产生毒性效应。本文以水稻为受试植物,以生物量、抗氧化还原体系酶活性等指标评...
吴碧莹朱利中
关键词:纳米二氧化钛水稻
文献传递
Enhancing plant-microbe associated bioremediation of phenanthrene and pyrene contaminated soil by SDBS-Tween 80 mixed surfactants被引量:17
2014年
The use of surfactants to enhance plant-microbe associated dissipation in soils contaminated with polycyclic aromatic hydrocarbons (PAHs) is a promising bioremediation technology. This comparative study was conducted on the effects of plant-microbe treatment on the removal of phenanthrene and pyrene from contaminated soil, in the presence of low concentration single anionic, nonionic and anionic-nonionic mixed surfactants. Sodium dodecyl benzene sulfonate (SDBS) and Tween 80 were chosen as representative anionic and nonionic surfactants, respectively. We found that mixed surfactants with concentrations less than 150 mg/kg were more effective in promoting plant-microbe associated bioremediation than the same amount of single surfactants. Only about (m/m) of mixed surfactants was needed to remove the same amount of phenanthrene and pyrene from either the planted or unplanted soils, when compared to Tween 80. Mixed surfactants (〈 150 mg/kg) better enhanced the degradation efficiency of phenanthrene and pyrene via microbe or plant-microbe routes in the soils. In the concentration range of 60-150 mg/kg, both ryegrass roots and shoots could accumulate 2-3 times the phenanthrene and pyrene with mixed surfactants than with Tween 80. These results may be explained by the lower sorption loss and reduced inteffacial tension of mixed surfactants relative to Tween 80, which enhanced the bioavailability of PAHs in soil and the microbial degradation efficiency. The higher remediation efficiency of low dosage SDBS-Tween 80 mixed surfactants thus advanced the technology of surfactant-enhanced plant-microbe associated bioremediation.
Hewei NiWenjun ZhouLizhong Zhu
关键词:RYEGRASS
Formaldehyde concentration and its influencing factors in residential homes after decoration at Hangzhou,China被引量:7
2013年
Air pollution surveys of formaldehyde(HCHO) were conducted in 2324 rooms decorated within one year in 2007-2009 in Hangzhou,China.The mean HCHO concentration(C HCHO) was 0.107 ± 0.095 mg/m 3,and 38.9% of samples exceeded the Chinese National Standard GB 50325-2010.Over the past 3 years,the C HCHO decreased with time(p 〈 0.05).Relationships of potential factors to indoor C HCHO were also evaluated.C HCHO was related to temperature(T),relative humidity(RH),time duration of the windows and doors being closed before sampling(DC),time duration from the end of decoration to sampling(DR) and source characteristics(d).A model to relate indoor C HCHO to these five factors(T,RH,DC,DR,d) was established based on 298 samples(R 2 = 0.87).Various factors contributed to C HCHO in the following order:T,43.7%;d,31.0%;DC,10.2%;DR,8.0%;RH,7.0%;specifically,meteorological conditions(i.e.,RH plus T) accounted for 50.7%.The coefficient of T and RH,R TH,was proposed to describe their combined influence on HCHO emission,which also had a linear relationship(R 2 = 0.9387) with HCHO release in a simulation chamber test.In addition,experiments confirm that it is a synergistic action as T and RH accelerate the release of HCHO,and that is a significant factor influencing indoor HCHO pollution.These achievements could lead to reference values of measures for the efficient reduction of indoor HCHO pollution.
Min GuoXiaoqiang PeiFeifei MoJianlei LiuXueyou Shen
关键词:FORMALDEHYDEEMISSIONTEMPERATURE
Sonication-assisted dispersion of carbon nanotubes in aqueous solutions of the anionic surfactant SDBS:The role of sonication energy被引量:5
2013年
Sonication is a powerful technique to promote the dispersion of carbon nanotubes(CNTs) and enhance their solubility;this is necessary for CNT applications,especially in the biochemical and biomedical fields.In this study,batch experiments were conducted to evaluate the role of sonication energy on the dispersion of CNTs in the presence of a widely used anionic surfactant,sodium dodecylbenzene sulfonate(SDBS).It was observed that the concentration of dispersed CNTs in the SDBS solution depended on the sonication energy,but not the sonication time or output power of the sonicator alone.The amount of dispersed CNTs was positively correlated with the concentrations of SDBS and CNTs,and the length of the CNTs.The promotion of oxygen-containing functional groups on the dispersed CNTs was observed at relatively low sonication energies.The optimal energy,i.e.the minimum energy supplied by sonication to achieve a saturated suspension of dispersed CNTs in the SDBS solution,was CNT diameter-dependent,because of the larger vdW forces between tubes of smaller diameter.An exponential decay curve was constructed for the optimal energy values as a function of the outer CNT diameter,to assist in determining the energy needed to disperse CNTs.
YANG KunYI ZiLiJING QingFengYUE RenLiangJIANG WeiLIN DaoHui
关键词:含氧官能团
Transformation of hydroxylated and methoxylated 2,2′,4,4′,5-brominated diphenyl ether(BDE-99) in plants被引量:1
2016年
The occurrence and fate of hydroxylated polybrominated diphenyl ethers(OH-PBDEs) and methoxylated polybrominated diphenyl ethers(Me O-PBDEs) have received significant attention. However, there is limited information on the metabolism relationship between OH-pentaB DEs and MeO-pentaB DEs that were frequently detected with relatively high concentrations in the environment. In this study, the biotransformation between OH-BDE-99 and MeO-BDE-99 was investigated in rice, wheat, and soybean plants. All the three plants can metabolize OH-BDE-99 to corresponding homologous methoxylated metabolites, while the transformation from MeO-BDE-99 to OH-BDE-99 could only be found in soybean. The conversion of parent compounds was the highest in soybean, followed by wheat and rice. Transformation products were found mainly in the roots, with few metabolites being translocated to the shoots and solution after exposure. The results of this study provide valuable information for a better understanding of the accumulation and transformation of OH-PBDEs and MeO-PBDEs in different plants.
Lili PanJianteng SunXiaodan WuZi WeiLizhong Zhu
共1页<1>
聚类工具0