In this paper, we consider the nonlinear instability of incompressible Euler equations. If a steady density is non-monotonic, then the smooth steady state is a nonlinear instability. First, we use variational method to find a dominant eigenvalue which is important in the construction of approximate solutions, then by energy technique and analytic method, we obtain the dynamical instability result.
The motion of the self-gravitational gaseous stars can be described by the Euler-Poisson equations. The main purpose of this paper is concerned with the existence of stationary solutions of Euler-Poisson equations for some velocity fields and entropy functions that solve the conservation of mass and energy. Under different restriction to the strength of velocity field, we get the existence and multiplicity of the stationary solutions of Euler-Poisson system.