Objectives To investigate the associations of the plasma homocysteine levels with the alterations in arterial stiffness in a commu- nity-based cohort. The gender differences in these associations were examined. Methods We evaluated the relationship between plasma homocysteine levels to three measures of vascular ftmction [carotid-femoral pulse wave velocity (CF-PWV), carotid-ankle PWV (CA-PWV) and heart rate corrected augmentation index (AI)] in 1680 participants (mean age: 61.5 years; 709 men, 971 women) from communities of Beijing, China. Results In univariate analysis, plasma homocysteine levels was positively related to the CF-PWV (r = 0.211, P 〈 0.0001) and CA-PWV (r = 0.148, P 〈 0.0001), whereas inversely associated with AI (r = -0.052, P = 0.016). In multiple linear regression models adjusting for covariants, plasma homocysteine remained positively related to the CF-PWV (standardized 13 = 0.065, P = 0.007) in total cases. When the groups of men and women were examined separately, plasma homocysteine remained positively associated with the CF-PWV (standardized β = 0.082, P = 0.023) in men, whereas the relations between homocysteine and any of the arterial stiffness indices were not further present in women. Conclusions In Chinese population, plasma homocysteine levels are independently associated with alterations of large artery stiffness in men but not in women.
Li SHENGCai WUYong-Yi BAIWen-Kai XIAODan FENGPing YE
Glycine is a well-documented cytoprotective agent.However,whether it has a protective effect against myocar-dial ischemia-reperfusion injury in vivo is still unknown.By using an open-chest anesthetized rat model,we found that glycine reduced the infarct size by 21% in ischemia-reperfusion injury rats compared with that in the vehicle-treated MI/R rats.The left ventricular ejection fraction and fractional shortening were increased by 19.11% and 30.98%,respectively,in glycine-treated rats.The plasma creatine kinase levels in ischemia-reperfusion injury rats decreased following glycine treatment.Importantly,administration of glycine significantly inhibited apoptosis in post-ischemia-reperfusion myocardium,which was accompanied by suppression of phosphorylated p38 mitogen-activated protein kinase and c-Jun NH2-terminal kinase,as well as the Fas ligand.These results suggest that gly-cine attenuates myocardial ischemia-reperfusion injury in vivo by inhibiting cardiomyocytes apoptosis.
The class A scavenger receptor, encoded by the macrophage scavenger receptor 1 (MSR1) gene, is a pattern recognition receptor (PPR) primarily expressed in macrophages. It has been reported that genetic polymorphisms of MSR1 are significantly associated with the number of diseased vessels and coronary artery narrowing greater than 20% in Caucasians. However, whether it links genetically to coronary artery disease (CAD) in Chinese is not defined. Here, we performed an independent case-control study in a Chinese population consisting of 402 CAD cases and 400 controls by genotyping ten single nucleotide polymorphisms (SNPs) of MSR1. We found that rs416748 and rs13306541 were significantly associated with an increased risk of CAD with per allele odds ratio (OR) of 1.56 [95% confidence interval (CI) = 1.28-1.90; P 〈 0.001] and 1.70 (95% CI = 1.27-2.27; P 〈 0.001), re- spectively. Our results indicate that genetic variants of MSR1 may serve as predictive markers for the risk of CAD / in combination with traditional risk factors of CAD in Chinese population.
Min ZhangYan ZhangShuaishuai ZhuXiaoyu LiQing YangHui BaiQi Chen
Doxorubicin (Dox) is a major anticancer chemotherapeutic agent. However, it causes cardiomyopathy due to the side effect of cardiomyocyte apoptosis. We have previously reported that angiopoietin-1 significantly reduced myocardial infarction after ischemic injury and protected cardiomyocytes from oxidative stress-induced apoptosis. It is hypothesized that angiopoietin-1 may protect cardiomyocytes from Dox-induced apoptosis. Cardiomyocytes H9C2 were transfected with adenovirus expressing angiopoietin-1 (Ad5-Ang-1) 24 h before the cells were chal- lenged with Dox at a concentration of 2 ~tmol/L. Ad5-GFP served as the vector control. Cardiomyocyte apoptosis was evaluated using Annexin V-FITC staining and caspase-3 and caspase-8 activity was determined by Western blotting. The results showed that Dox treatment significantly induced cardiomyocyte apoptosis as evidenced by the greater number of Annexin V-FITC stained cells and increases in caspase-3 and caspase-8 activity. In contrast, overexpression of angiopoietin-1 significantly prevented Dox-induced cardiomyocyte apoptosis. To elucidate the mechanisms by which angiopoietin-1 protected cells from Dox-induced apoptosis, we analyzed both extrinsic and intrinsic apoptotic signaling pathways. We observed that angiopoietin-1 prevented Dox-induced activation of both extrinsic and intrinsic apoptotic signaling pathways. Specifically, angiopoietin-1 prevented DOX-induced in- creases in FasL and Bax levels and cleaved caspase-3 and caspase-8 levels in H9C2 cells. In addition, overexpres- sion of angiopoietin-1 also activated the pro-survival phosphoinositide-3 kinase (PI3K)/Akt signaling pathway and decreased Dox-induced nuclear factor-kappaB (NF-~:B) activation. Our data suggest that promoting the expression of angiopoietin-1 could be a potential approach for reducing Dox-induced cardiomyocyte cytoxicity.
Danyang RenQuan ZhuJiantao LiTuanzhu HaXiaohui WanYuehua Li