为了实现当前屏幕图像特征点与模板图像中对应尺度下部分区域中特征点的快速匹配,解决图像跟踪算法中匹配精度与效率问题,提出一种特征点分层分区域管理的图像跟踪算法.在预处理阶段,对模板图像构造层次表示并对各尺度下的图像进行区域划分,在每个区域内同时提取ORB(oriented FAST and rotated BRIEF)特征点和Harris特征点,由ORB特征描述子计算区域图像的词袋特征向量,由此构建图像特征点的分层分区域管理模式.在实时跟踪阶段,根据摄像机位姿跟踪的情况区分预测跟踪、重定位跟踪和光流跟踪3个分支.在预测跟踪和重定位跟踪中,先快速定位实时图像对应的模板图像的尺度层与区域,再通过实时采集的图像与模板图像中对应尺度下部分区域中特征点的局部匹配,实时地计算摄像机的位置和方向;在光流跟踪过程中对光流算法跟踪点进行实时更新,延长光流算法的运行持续时间.利用公开图像数据库中不同分辨率的模板图像在移动终端上进行实验的结果表明,文中算法性能稳定,匹配误差在1个像素以内;系统运行帧率总体稳定在20~30帧/s.
A lunar model with real texture can be obtained by mapping texture onto the lunar mesh,but the convergence in the polar regions of lunar model is a problem.In this paper,we build a 3D lunar model and solve this problem by texture partitioning and transforming.The whole lunar map is divided into four images and the polar images are transformed to circular textures before mapped to the semi-regular(SR) lunar mesh which is obtained through denoising,triangulating,subdividing and resampling the laser altimetry(LAM) data.Hundreds of lunar labels are classed into three levels and added gradually to the lunar model considering the distance between the viewpoint and the moon center.Through some techniques such as mip-map and view-dependent,the lunar model with textures and labels can be interactively browsed on a personal computer(PC) in real time.