The DSMC modeling is developed to simulate three-dimensional(3D)rarefied ionization flows and numerically forecast the communication blackout around spacecraft during hypervelocity reentry.A new weighting factor scheme for rare species is introduced,whose key point is to modify the corresponding chemical reaction coefficients involving electrons,meanwhile reproduce the rare species in resultants and preserve/delete common species in reactants according to the weighting factors.The resulting DSMC method is highly efficient in simulating weakly inhomogeneous flows including the Couette shear flow and controlling statistical fluctuation with high resolution.The accurate reliability of the present DSMC modeling is also validated by the comparison with a series of experimental measurements of the Shenzhou reentry capsule tested in a low-density wind tunnel from the HAI of CARDC.The obtained electron number density distribution for the RAM-C II vehicle agrees well with the flight experiment data,while the electron density contours for the Stardust hypervelocity reentry match the reference data completely.In addition,the present 3D DSMC algorithm can capture distribution of the electron,N+and O+number densities better than the axis-symmetric DSMC model.The introduction of rare species weighting factor scheme can significantly improve the smoothness of the number density contours of rare species,especially for that of electron in weak ionization case,while it has negligible effect on the macroscopic flow parameters.The ionization characteristics of the Chinese lunar capsule reentry process are numerically analyzed and forecasted in the rarefied transitional flow regime at the flying altitudes between 80 and 97 km,and the simulations predict communication blackout altitudes which are in good agreement with the actual reentry flight data.For the spacecraft reentry with hypervelocity larger than the second cosmic speed,it is forecasted and verified by the present DSMC modeling that ionization reactions will cover the windwa
Ming FangZhi-Hui LiZhong-Hua LiJie LiangYong-Hao Zhang
Open-loop flow control method was used to affect the development of a turbulent wake behind a D-shaped bluff body. Loud speakers were embedded inside the bluff body to produce two zero-net-mass- flux jets through 2 mm-wide span-wise slots located along the upper and lower edges on the rear wall. The drag forces for different actuation amplitudes (Cμ, the ratio between the momentum of the actuating jets and the moment deficit caused by the bluff body) and frequencies (StA) were examined. The effects of the phase difference in the two jets (0 and π) were also studied. It was found that when Cμ was 0.1%, a drag reduction up to 5% was achieved when the velocities of the two jets varied in phase at a frequency of 5tA = 0.16. When the velocities of the two jets varied π out of phase, significant drag increase was observed.