Using a recently established liquid crystal model for vesicles, we present a theoretical method to analyze the morphological stability of liquid crystal vesicles in an electric field. The coupled mechanical-electrical effects associated with elastic bending, osmotic pressure, surface tension, Max- well pressure, as well as flexoelectric and dielectric proper- ties of the membrane are taken into account. The first and second variations of the free energy are derived in a com- pact form by virtue of the surface variational principle. The former leads to the shape equation of a vesicle embedded in an electric field, and the latter allows us to examine the stabil- ity of a given vesicle morphology. As an illustrative exam- ple, we analyze the stability of a spherical vesicle under a uniform electric field. This study is helpful for understanding and revealing the morphological evolution mechanisms of vesicles in electric fields and some associated phenomena of cells.
In this paper,a phenomenological continuum theory of surface piezoelectricity accounting for the linear superficial interplay between electricity and elasticity is formulated primarily for elastic dielectric materials.This theory is inspired by the physical idea that once completely relaxed,an insulating free dielectric surface will sustain a nontrivial spontaneous surface polarization in the normal direction together with a tangential self-equilibrated residual surface stress field.Under external loadings,the surface Helmholtz free energy density is identified as the characteristic function of such surfaces,with the in-plane strain tensor of surface and the surface free charge density as the independent state variables.New boundary conditions governing the surface piezoelectricity are derived through the variational method.The resulting concepts of charge-dependent surface stress and deformationdependent surface electric field reflect the linear electromechanical coupling behavior of nanodielectric surfaces.As an illustrative example,an infinite radially polarizable piezoelectric nanotube with both inner and outer surfaces grounded is investigated.The novel phenomenon of possible surface-induced polarity inversion is predicted for thin enough nanotubes.
Self-assembled nanostructures of lipids and nanoparticles hold great promise for applications in such fields as nanomedicine. This paper uses the self-consistent field theory to investigate the self-assembly behavior of lipid molecules and nanoparticles with different shapes in an aqueous solution. It is found that the lipid molecules can form monolayered and bilayered nanostructures around the nanopartieles with different shapes (e.g., triangular, square, hexagonal and octangular). With decreasing the size of nanoparticles or increasing the number of polygon edges, the shape of lipid layers will approach an approximately spherical shape. These findings may help to predict and design novel drug delivery nanocarriers.
Introduction Recently,much attention has been attracted to various phenomena and processes associated with cells and vesicles in electric fields,e.g. ,electroporation,electrofusion,electrophoresis,electro-deformation and rotation. Cells
Xi-Qiao Feng(Institute of Biomechanics and Medical Engineering,Department of Engineering Mechanics,Tsinghua University,Beijing 100084,China.)