This observational study demonstrates that the Somali jet(SMJ) experienced a notable interdecadal transition in not only its lower-level parts(〈 850 hP a) but also its higher-level parts(850-600 h Pa) in the late 1990 s. The results also show that the jet at higher level is more significantly related to East Asian monsoon rainfall than that at lower level. Thus, a new whole-layer SMJ(WSMJ) index which includes variations of the higher-level jet is defined based on the average meridional wind speed at five levels(1000-600 h Pa). The interdecadal transition of the SMJ can be mainly attributed to the meridional thermal contrast anomalies near the equator which are associated with the three-pole pattern of the southern Indian Ocean.
One of the major high-latitude circulation systems in the Southern Hemisphere is the Southern Annular Mode(SAM). Its effect on the Somali Jet(SMJ), which connects the Southern and Northern hemispheres, cannot be ignored. The present reported results show that time series of both the Southern Annular Mode Index(SAMI) during the preceding winter and the summertime Somali Jet intensity Index(SMJI) display a significant increasing trend and have similar interdecadal variation. The latter was rather strong around 1960, then became weaker up to the mid-1980 s, before starting to strengthen again. The lead-lag correlations of monthly mean SAMI with the following summertime SMJI showed significant positive correlations in November, December, and January. There are thus connections across two seasons between the SAM and the SMJ. The influence of the winter SAM on the summer SMJ was explored via analyses of SST anomalies in the Southern Indian Ocean. During strong(weak) SAM/SMJ years, the SST east of Madagascar is colder(warmer) while the SST west of Australia is warmer(colder), corresponding to the positive(negative) Southern Indian Ocean Dipole-like(SIODL) event. Subsequently, the SIODL excites an anticyclone located over the Arabian Sea in summer through air-sea coupling from winter to summer, which causes an increase in the summer SMJ intensity. The anticyclone/high branch of the SAM over the Southern Hemisphere subtropics and the cyclone/low over the east coast of Madagascar play an important role in the formation of Southern Indian Ocean "bridge" from winter to summer.
Based on Hadley Center monthly global SST,1960-2009 NCEP/NCAR reanalysis data and observation rainfall data over 160 stations across China,the combined effect of Indian Ocean Dipole(IOD)and Pacific SSTA(ENSO)on winter rainfall in China and their different roles are investigated in the work.The study focuses on the differences among the winter precipitation pattern during the years with Indian Ocean Dipole(IOD)only,ENSO only,and IOD and ENSO concurrence.It is shown that although the occurrences of the sea surface temperature anomalies of IOD and ENSO are of a high degree of synergy,their impacts on the winter precipitation are not the same.In the year with positive phase of IOD,the winter rainfall will be more than normal in Southwest China(except western Yunnan),North China and Northeast China while it will be less in Yangtze River and Huaihe River Basins.The result is contrary during the year with negative phase of IOD.However,the impact of IOD positive phase on winter precipitation is more significant than that of the negative phase.When the IOD appears along with ENSO,the ENSO signal will enhance the influence of IOD on winter precipitation of Southwest China(except western Yunnan),Inner Mongolia and Northeast China.In addition,this paper makes a preliminary analysis of the circulation causes of the relationship between IOD and the winter rainfall in China.
Based on the ERA reanalysis winds data, the multi-time scale variations of Somali jet are analyzed synthetically. The jet's influences on rainfall in China on interannual, interdecadal and sub-monthly scales are also studied using correlation and composite analyses. The results demonstrate that the interdecadal variations of the jet are significant.The Somali jet became weaker in the 1960 s and became the weakest in the early 1970 s before enhancing slowly in the late 1970 s. Moreover, the relation between the Somali jet and summer precipitation in China is close, but varies on different timescales. Preliminary analysis shows that the intensity variations in May and June during the early days of establishment are well correlated with summer precipitation in China. The Somali jet intensity on the interdecadal scale is closely related with interdecadal variations of the precipitation in China. Regardless of leading or contemporaneous correlation, the correlations between the Somali jet intensity and the rainfall in northern and southern China show obvious interdecadal variations. Moreover, the link between the anomalies of the jet intensity in May-August and precipitation evolution on synoptic scale in China is further studied. China has more rainfall with positive anomalies of the Somali jet but less rainfall with negative anomalies during the active period of the jet. The influence of positive Somali jet anomalies on China precipitation is more evident.
The characteristics of atmospheric-angular-momentum (AAM) and length-of-day (LOD) on different timescales are investigated in this paper, on the basis of the NECP/NCAR reanalysis data and an LOD dataset for 1962-2010. The variation and overall trend of the AAM anomaly (AAMA) at different latitudes are presented, and the relationship between AAMA and LOD is discussed. The AAMAs in different latitude regions exhibit different patterns of variation, and the AAMA in the tropics makes a dominant contribution to the global AAMA. In the tropics, the AAMA propagates poleward to the extratropical regions. It is confirmed that a downward propagation of the AAMA occurs in the lower stratosphere. Correlation analysis shows that the relationship between AAMA and LOD varies significantly on different timescales. Specifically, the tropical AAMA is positively correlated with LOD on short timescales, but they are not obviously correlated on long timescales. This indicates that the interaction between AAM and the earth's angular momentum follows the conservative restriction on short timescales, but the influence of the earth angular momentum on that of the atmosphere depends on the interaction process on long timescales.