This paper presents an integrated missile guidance and control law based on adaptive fuzzy sliding mode control. The integrated model is formulated as a block-strict-feedback nonlinear system, in which modeling errors, unmodeled nonlinearities, target maneuvers, etc. are viewed as unknown uncertainties. The adaptive nonlinear control law is designed based on backstepping and sliding mode control techniques. An adaptive fuzzy system is adopted to approximate the coupling nonlinear functions of the system, and for the uncertainties, we utilize an online-adaptive control law to estimate the unknown parameters. The stability analysis of the closed-loop system is also conducted. Simulation results show that, with the application of the adaptive fuzzy sliding mode control, small miss distances and smooth missile trajectories are achieved, and the system is robust against system uncertainties and external disturbances.
The observer-based robust fault detection and optimization for a network of unmanned vehicles with imperfect communication channels and norm bounded modeling uncertainties are addressed. The network of unmanned vehicles is modeled as a discrete-time uncertain Markovian jump system. Based on the model, a residual generator is constructed and the sufficient condition for the existence of the desired fault detection filter is derived in terms of linear matrix inequality. Furthermore, a time domain optimization approach is proposed to improve the performance of the fault detection system. The problem of detecting small faults can be formulated as an optimization problem and its solution is given. For preventing false alarms, a new adaptive threshold function is established. The combined fault detection and optimization algorithm and the adaptive threshold are then applied to a network of highly maneuverable technology vehicles to illustrate the effective- ness of the orooosed aooroach.