您的位置: 专家智库 > >

国家自然科学基金(61074079)

作品数:11 被引量:88H指数:5
相关作者:侍洪波马贺贺胡益解翔王丽更多>>
相关机构:华东理工大学上海应用技术学院更多>>
发文基金:国家自然科学基金上海市教育委员会重点学科基金上海市自然科学基金更多>>
相关领域:自动化与计算机技术化学工程更多>>

文献类型

  • 11篇中文期刊文章

领域

  • 10篇自动化与计算...
  • 1篇化学工程

主题

  • 3篇多模态
  • 3篇故障检测
  • 2篇在线监控
  • 2篇化工过程
  • 2篇BASED_...
  • 2篇FAULT_...
  • 2篇MULTIM...
  • 1篇支持向量
  • 1篇支持向量数据...
  • 1篇软测量
  • 1篇数据描述
  • 1篇搜索
  • 1篇搜索算法
  • 1篇统计指标
  • 1篇偏最小二乘
  • 1篇主元
  • 1篇主元分析
  • 1篇最小二乘
  • 1篇网络
  • 1篇网络模型

机构

  • 7篇华东理工大学
  • 1篇上海应用技术...

作者

  • 7篇侍洪波
  • 3篇胡益
  • 3篇马贺贺
  • 2篇解翔
  • 1篇王丽
  • 1篇马玉鑫
  • 1篇王梦灵
  • 1篇阎兴頔
  • 1篇赵晶晶

传媒

  • 5篇化工学报
  • 2篇Chines...
  • 2篇Journa...
  • 1篇计算机与应用...
  • 1篇华东理工大学...

年份

  • 1篇2013
  • 7篇2012
  • 3篇2011
11 条 记 录,以下是 1-10
排序方式:
基于局部线性嵌入算法的化工过程故障检测被引量:12
2012年
随着工业过程日趋复杂,系统安全及产品质量的在线监控也变得日益重要。针对化工过程的非线性特点,提出了一种新的基于局部线性嵌入(locally linear embedding,LLE)流形学习算法和支持向量数据描述(sup-port vector data description,SVDD)的故障检测方法。首先,使用LLE提取高维数据的低维子流形,进行维数约减,以保存更多原有系统的非线性特性,通过局部线性回归得到高维数据空间到低维特征空间的映射矩阵,保证了算法的实时性;然后,为了避免数据噪声的累加对传统统计量的影响,引入SVDD直接根据特征空间建立SVDD模型,构造统计量并确定其控制限;最后,通过数字仿真及Tennessee Eastman(TE)过程仿真研究验证了本文方法的有效性。
马玉鑫王梦灵侍洪波
关键词:局部线性嵌入算法支持向量数据描述故障检测
基于马氏距离局部离群因子方法的复杂化工过程故障检测被引量:28
2013年
为了满足实际的生产需要,复杂化工过程往往包含多个运行模态。同时过程的复杂性使得同一模态下的数据分布是一种高斯分布和非高斯分布混合存在的不确定情况。数据的多模态分布特性以及同一模态下数据分布的不确定性使得传统多元统计监控(MSPM)方法很难给出令人满意的结果。针对这一问题,本文提出一种新的马氏距离局部离群因子(MDLOF)方法进行故障检测。通过利用马氏距离挖掘变量局部结构中包含的有用信息,并对样本的邻域密度加以考虑,形成对数据分布具有鲁棒性的基于密度的监控指标。最后通过数值仿真例子及Tennessee Eastman过程验证其有效性。
马贺贺胡益侍洪波
关键词:故障检测
多模态化工过程的全局监控策略被引量:7
2012年
引言基于数据驱动的过程监控方法从20世纪80年代建立以来得到了蓬勃的发展,理论体系逐渐完善,功能模块不断丰富。特别是最近几年,来自人工智能,机器学习及信号处理领域的各种方法的引入为该领域注入了新的活力。
解翔侍洪波
关键词:在线监控高斯混合模型
An Improved PLS (IPLS) Method Utilizing Local Standardization Strategy for Multimode Process Monitoring被引量:1
2012年
Complex industrial process often contains multiple operating modes, and the challenge of multimode process monitoring has recently gained much attention. However, most multivariate statistical process monitoring (MSPM) methods are based on the assumption that the process has only one nominal mode. When the process data contain different distributions, they may not function as well as in single mode processes. To address this issue, an improved partial least squares (IPLS) method was proposed for multimode process monitoring. By utilizing a novel local standardization strategy, the normal data in multiple modes could be centralized after being standardized and the fundamental assumption of partial least squares (PLS) could be valid again in multimode process. In this way, PLS method was extended to be suitable for not only single mode processes but also multimode processes. The efficiency of the proposed method was illustrated by comparing the monitoring results of PLS and IPLS in Tennessee Eastman(TE) process.
马贺贺胡益阎兴頔侍洪波
On-Line Batch Process Monitoring Using Multiway Kernel Partial Least Squares被引量:4
2011年
An approach for batch processes monitoring and fault detection based on multiway kernel partial least squares(MKPLS) was presented.It is known that conventional batch process monitoring methods,such as multiway partial least squares(MPLS),are not suitable due to their intrinsic linearity when the variations are nonlinear.To address this issue,kernel partial least squares(KPLS) was used to capture the nonlinear relationship between the latent structures and predictive variables.In addition,KPLS requires only linear algebra and does not involve any nonlinear optimization.In this paper,the application of KPLS was extended to on-line monitoring of batch processes.The proposed batch monitoring method was applied to a simulation benchmark of fed-batch penicillin fermentation process.And the results demonstrate the superior monitoring performance of MKPLS in comparison to MPLS monitoring.
胡益马贺贺侍洪波
基于改进的小世界网络的组搜索算法及其应用被引量:1
2011年
针对合成氨工艺中,合成塔出口氨含量软测量神经网络模型的参数优化问题,提出了一种改进的小世界网络模型,并将其引入到组搜索优化算法中。改进后的小世界网络在计算节点之间相连接的概率时考虑节点间的距离因素,相距较近的节点间比相距较远的节点之间更容易连接。将改进后的小世界网络引入组搜索算法后,种群中的"追随者"在每次迭代中,根据当前迭代次数及与其它个体间的距离计算自身与其它个体的相连接概率,相连概率随着迭代增加而线性增大,随着个体间距离的增加而指数递减。"追随者"根据相连概率选择与自身相连接的个体,再用与其相连的个体构建自身的"邻域"并选取"邻域"中的最优个体作为局部最优解个体。"追随者"更新自身位置时不仅参考整个种群中的全局最优个体,还同时参考自身邻域中的局部最优个体。该算法能够提高种群中个体的多样性,具有更好的全局搜索能力和收敛速度。将该算法应用于氨合成塔出口氨含量软测量建模问题中,对神经网络模型的参数进行优化,并与其它3种方法比较。仿真结果表明,基于改进的小世界网络模型的组搜索算法能够获得更好的模型参数,提高软测量模型的精度。
阎兴頔赵晶晶侍洪波
关键词:小世界网络模型
一种适用于多模态过程监控的集成统计指标被引量:1
2012年
具有多模态特性的工业过程的数据分布呈现出与单模态过程不同的特性。在构造监控指标时,不仅要能够概括每个模态内部的数据统计特征,还要充分考虑到不同模态之间的信息。传统的T^2和SPE统计量在多模态过程中可能无法实现这一目标。提出了一种融合多模态统计信息的全局监控统计量,在贝叶斯推论的框架下,通过对每个模态的局部马氏距离赋予相应权重来实现对多模态数据的描述。通过多模态的连续反应搅拌釜(CSTH)仿真实验,验证了全局监控指标的有效性和灵敏性。
解翔侍洪波
基于核PLS方法的非线性过程在线监控被引量:20
2011年
针对过程监控数据的非线性特点,提出了一种基于核偏最小二乘(KPLS)的监控方法。KPLS方法是将原始输入数据通过核函数映射到高维特征空间,然后在高维特征空间再进行偏最小二乘(PLS)运算。与线性PLS相比,KPLS方法能充分利用样本空间信息,建立起输入输出变量之间的非线性关系。与其他非线性PLS方法不同,KPLS方法只需要进行线性运算,从而避免非线性优化问题。在对过程进行监控时,首先采用KPLS方法建立模型,得到得分向量,然后计算出T2和SPE统计量及其相应的控制限。Tennessee Eastman(TE)模型上的仿真研究结果表明,所提方法比线性PLS方法具有更好的过程监控性能。
胡益王丽马贺贺侍洪波
关键词:核偏最小二乘
Multimode Process Monitoring Based on Fuzzy C-means in Locality Preserving Projection Subspace被引量:5
2012年
For complex industrial processes with multiple operational conditions, it is important to develop effective monitoring algorithms to ensure the safety of production processes. This paper proposes a novel monitoring strategy based on fuzzy C-means. The high dimensional historical data are transferred to a low dimensional subspace spanned by locality preserving projection. Then the scores in the novel subspace are classified into several overlapped clusters, each representing an operational mode. The distance statistics of each cluster are integrated though the membership values into a novel BID (Bayesian inference distance) monitoring index. The efficiency and effectiveness of the proposed method are validated though the Tennessee Eastman benchmark process.
解翔侍洪波
Soft Sensor for Ammonia Concentration at the Ammonia Converter Outlet Based on an Improved Group Search Optimization and BP Neural Network被引量:5
2012年
The ammonia synthesis reactor is the core unit in the whole ammonia synthesis production. The ammonia concentration at the ammonia converter outlet is a significant process variable, which reflects directly the production efficiency. However, it is hard to be measured reliably online in real applications. In this paper, a soft sensor based on BP neural network (BPNN) is applied to estimate the ammonia concentration. A modified group search optimization with nearest neighborhood (GSO-NH) is proposed to optimize the weights and thresholds of BPNN. GSO-NH is integrated with BPNN to build a soft sensor model. Finally, the soft sensor model based on BPNN and GSO-NH (GSO-NH-NN) is used to infer the outlet ammonia concentration in a real-world application. Three other modeling methods are applied for comparison with GSO-NH-NN. The results show that the soft sensor based on GSO-NH-NN has a good prediction performance with high accuracy. Moreover, the GSO-NH-NN also provides good generalization ability to other modeling problems in ammonia synthesis production.
阎兴頔杨文马贺贺侍洪波
共2页<12>
聚类工具0