采用CFD+CAA的混合方法对三维湍流激励的气动噪声进行了仿真计算。流场计算部分采用有限体积法求解RANS方程,得到定常的背景流场。在流场计算的基础上,基于SNGR(Stochastic Noise Generation and Radia-tion)方法构造声学控制方程LEE的右端源项,采用高阶间断有限元法(DG)求解线性欧拉方程(LEE)得到后视镜的非定常声场。适用于复杂外形的气动噪声仿真计算,是一种非常实用的气动噪声工程计算方法。
In this paper,high-order Discontinuous Galerkin(DG)method is used to solve the two-dimensional Euler equations.A shock-capturing method based on the artificial viscosity technique is employed to handle physical discontinuities.Numerical tests show that the shocks can be captured within one element even on very coarse grids.The thickness of the shocks is dominated by the local mesh size and the local order of the basis functions.In order to obtain better shock resolution,a straightforward hp-adaptivity strategy is introduced,which is based on the high-order contribution calculated using hierarchical basis.Numerical results indicate that the hp-adaptivity method is easy to implement and better shock resolution can be obtained with smaller local mesh size and higher local order.
The flow-induced noise is simulated with a hybrid method.Firstly,a steady-state background flow field is given by solving Reynolds averaged Navier-Stokes(RANS)equations with finite volume(FV)method on structured grid.Then the linearized Euler equations(LEE)can be constructed based on the resulted background flow field,where the source term on the right hand side is computed using stochastic noise generation and radiation(SNGR)method.Finally,the unsteady acoustic field is obtained through solving LEE using high-order discontinuous Galerkin(DG)method on unstructured grid,where the parallel computing based on mesh partitioning and a″Quadrature-Free Implementation″method for high-order DG are employed to accelerate the computation.In order to demonstrate the sound propagation in detail,a visualization method for high-order schemes is also developed here.Moreover,in order to test the validation and the accuracy,a 3D cavity test in comparison with the experimental data is displayed first in this paper,then a 3D high-lift wing is also simulated to demonstrate its capability for very complex geometries.