Inherent flaws in the extended Kalman filter(EKF) algorithm were pointed out and unscented Kalman filter(UKF) was put forward as an alternative.Furthermore,a novel adaptive unscented Kalman filter(AUKF) based on innovation was developed.The three data-fusing approaches were analyzed and evaluated in a mathematically rigorous way.Field experiments conducted in lake further demonstrate that AUKF reduces the position error approximately by 65% compared with EKF and by 35% UKF and improves the robust performance.
An intensive field observation experiment using 12 Chinese gliders equipped with conductivity-temperature-depth (CTD) sensors and 62 expendable CTD probes (XCTDs) was performed to investigate the 3-D structure and time evolution of an anticyclonic eddy in the northern South China Sea (NSCS). The observed results showed that the anticyclonic eddy had a horizontal radius of about 80 km at surface and a vertical depth of impact of more than 1000 m. The largest temperature and salinity anomalies compared with the averaged values of the temperature and salinity profiles were 3.5°C and 0.4 psu at 120 m depth, respectively. Combined analysis of altimeter sea level and water mass properties indicated that the anticyclonic eddy was shed from the Kuroshio loop current. The vertical axis of the anticyclonic eddy tilted from surface to the observed maximum depth (1000 m) along its translation direction against the 2000 m isobath. The center of the anticyclonic eddy remained in the region east of Dongsha Island for more than half a month. During this time, the long axis direction of the eddy changed from across the slope to along the slope. Then, the eddy moved southward along the 2000 m isobaths. Both the geostrophic current and temperature distribution revealed that the eddy intensity weakened during the observation period gradually. These observations indicated strong interaction between the anticyclonic eddy and the slope topography of Dongsha Island.
Yeqiang SHUJu CHENShuo LIQiang WANGJiancheng YUDongxiao WANG
Wave driven unmanned surface vehicle(WUSV) is a new concept ocean robot drived by wave energy and solar energy,and it is very suitable for the vast ocean observations with incomparable endurance.Its dynamic modeling is very important because it is the theoretical foundation for further study in the WUSV motion control and efficiency analysis.In this work,the multibody system of WUSV was described based on D-H approach.Then,the driving principle was analyzed and the dynamic model of WUSV in longitudinal profile is established by Lagrangian mechanics.Finally,the motion simulation of WUSV and comparative analysis are completed by setting different inputs of sea state.Simulation results show that the WUSV dynamic model can correctly reflect the WUSV longitudinal motion process,and the results are consistent with the wave theory.