您的位置: 专家智库 > >

国家自然科学基金(61300167)

作品数:12 被引量:21H指数:3
相关作者:丁卫平陈森博王建东管致锦程学云更多>>
相关机构:南通大学南京大学南京航空航天大学更多>>
发文基金:国家自然科学基金江苏省自然科学基金江苏省“六大人才高峰”高层次人才项目更多>>
相关领域:自动化与计算机技术理学轻工技术与工程更多>>

文献类型

  • 9篇中文期刊文章

领域

  • 8篇自动化与计算...
  • 1篇理学

主题

  • 2篇支持向量
  • 2篇支持向量机
  • 2篇向量
  • 2篇向量机
  • 2篇惯性权重
  • 2篇MRI分割
  • 1篇约简算法
  • 1篇云计算
  • 1篇日志
  • 1篇日志分析
  • 1篇属性约简
  • 1篇帕金森
  • 1篇帕金森疾病
  • 1篇评价指标
  • 1篇群算法
  • 1篇中心力
  • 1篇自适
  • 1篇自适应
  • 1篇蛙跳算法
  • 1篇粒子群

机构

  • 7篇南通大学
  • 3篇南京大学
  • 2篇南京航空航天...
  • 1篇南通航运职业...
  • 1篇南京理工大学
  • 1篇苏州大学

作者

  • 6篇丁卫平
  • 3篇陈森博
  • 2篇王建东
  • 2篇管致锦
  • 1篇陈张杰
  • 1篇王杰华
  • 1篇张晓峰
  • 1篇程学云

传媒

  • 2篇计算机与数字...
  • 2篇IEEE/C...
  • 1篇南京大学学报...
  • 1篇四川大学学报...
  • 1篇计算机工程与...
  • 1篇Journa...
  • 1篇电脑知识与技...

年份

  • 2篇2022
  • 3篇2019
  • 1篇2016
  • 1篇2015
  • 1篇2014
  • 1篇2013
12 条 记 录,以下是 1-9
排序方式:
基于云计算的多层量子精英属性协同约简算法被引量:1
2015年
针对传统粗糙集属性约简算法无法高效处理日益增长的大数据问题,提出一种基于云计算的多层量子精英属性协同约简算法。该算法首先在云计算MapReduce模型下将大规模数据集划分到不同的进化蛙群中,分别获得各子种群最优解;然后构造一种基于多层量子蛙群精英向量的属性协同约简策略,挑选出具有全局搜索和局部精化最强优化能力的精英子种群向量,快速引导各子种群找到各自最小属性约简集,从而取得大规模数据集的全局最优属性约简集。实验结果表明,本文算法在大规模数据集上求解全局最优属性约简解的效率和精度具有明显优势,同时应用于电子病历数据库MRI分割效果表明其具有较强适用性。
丁卫平陈森博王杰华管致锦
关键词:云计算MAPREDUCE模型MRI分割
基于改进混合蛙跳算法的粗糙属性交叉熵优化约简被引量:4
2014年
结合粗糙集属性约简二进制优化模型,提出一种基于改进混合蛙跳算法的粗糙属性交叉熵优化约简算法,该算法将粗糙集属性划分至不同蛙群进化模因组内,每个模因组内属性集设计成以精英个体为中心力的蛙群并行演化方式,并采用交叉熵最小原理进行精英个体寻优全局最优约简集,快速而有效地处理大规模信息系统的属性约简.UCI仿真实验结果表明本文提出的算法在搜索全局最小属性约简解效率和精度方面具有明显优势,该算法应用于含噪音的人脑核磁共振图像MRI分割实验,其对MRI图像分割的高效性进一步表明该算法具有较强的适用性.
丁卫平王建东陈森博程学云沈学华
关键词:属性约简交叉熵MRI分割
基于差空间融合特征选择的SVM算法被引量:1
2019年
为解决核主成分分析(KPCA)和支持向量机(SVM)融合算法分类精度差的问题,提出基于差空间融合特征选择的SVM算法。利用主成分分析(PCA)处理原始数据,得到差空间数据;分别对原数据和差空间数据进行KPCA,得到融合特征;用ReliefF算法得到对应特征的权重,根据初步分类评价指标选择最优的特征组合;对得到的数据利用SVM进行分类。该算法在UCI数据集上的测试结果表明,它能够有效提高分类精度,在高维数据中减小分类过程的计算复杂度。
景炜丁卫平
关键词:核主成分分析RELIEFF算法支持向量机
Belief Combination of Classifiers for Incomplete Data
2022年
Data with missing values,or incomplete information,brings some challenges to the development of classification,as the incompleteness may significantly affect the performance of classifiers.In this paper,we handle missing values in both training and test sets with uncertainty and imprecision reasoning by proposing a new belief combination of classifier(BCC)method based on the evidence theory.The proposed BCC method aims to improve the classification performance of incomplete data by characterizing the uncertainty and imprecision brought by incompleteness.In BCC,different attributes are regarded as independent sources,and the collection of each attribute is considered as a subset.Then,multiple classifiers are trained with each subset independently and allow each observed attribute to provide a sub-classification result for the query pattern.Finally,these sub-classification results with different weights(discounting factors)are used to provide supplementary information to jointly determine the final classes of query patterns.The weights consist of two aspects:global and local.The global weight calculated by an optimization function is employed to represent the reliability of each classifier,and the local weight obtained by mining attribute distribution characteristics is used to quantify the importance of observed attributes to the pattern classification.Abundant comparative experiments including seven methods on twelve datasets are executed,demonstrating the out-performance of BCC over all baseline methods in terms of accuracy,precision,recall,F1 measure,with pertinent computational costs.
Zuowei ZhangSongtao YeYiru ZhangWeiping DingHao Wang
关键词:CLASSIFICATION
基于Hadoop集群的日志分析系统的设计与实现被引量:2
2013年
当前Internet上存在着海量的日志数据,他们中蕴藏着大量可用的信息。对海量数据的存储和分析都是一个艰巨而复杂的任务,单一主机已经无法满足要求,使用分布式存储和分布式计算来分析数据已经成为了必然的趋势。分布式计算框架Hadoop已经日趋成熟,被广泛的应用于很多领域。该文描述了一个针对大日志分析的分布式集群的构建与实现过程。介绍了日志分析的现状,使用vmware虚拟机搭建了Hadoop集群和日志分析系统的构建方法,并对实验结果进行了分析。
陈森博陈张杰
关键词:分布式计算日志分析HADOOP集群VMWARE
Co-evolutionary cloud-based attribute ensemble multi-agent reduction algorithm
2016年
In order to improve the performance of the attribute reduction algorithm to deal with the noisy and uncertain large data, a novel co-evolutionary cloud-based attribute ensemble multi-agent reduction(CCAEMR) algorithm is proposed.First, a co-evolutionary cloud framework is designed under the M apReduce mechanism to divide the entire population into different co-evolutionary subpopulations with a self-adaptive scale. Meanwhile, these subpopulations will share their rewards to accelerate attribute reduction implementation.Secondly, a multi-agent ensemble strategy of co-evolutionary elitist optimization is constructed to ensure that subpopulations can exploit any correlation and interdependency between interacting attribute subsets with reinforcing noise tolerance.Hence, these agents are kept within the stable elitist region to achieve the optimal profit. The experimental results show that the proposed CCAEMR algorithm has better efficiency and feasibility to solve large-scale and uncertain dataset problems with complex noise.
丁卫平王建东张晓峰管致锦
Large-Scale Group Decision Making:A Systematic Review and a Critical Analysis
2022年
The society in the digital transformation era demands new decision schemes such as e-democracy or based on social media.Such novel decision schemes require the participation of many experts/decision makers/stakeholders in the decision processes.As a result,large-scale group decision making(LSGDM)has attracted the attention of many researchers in the last decade and many studies have been conducted in order to face the challenges associated with the topic.Therefore,this paper aims at reviewing the most relevant studies about LSGDM,identifying the most profitable research trends and analyzing them from a critical point of view.To do so,the Web of Science database has been consulted by using different searches.From these results a total of 241 contributions were found and a selection process regarding language,type of contribution and actual relation with the studied topic was then carried out.The 87 contributions finally selected for this review have been analyzed from four points of view that have been highly remarked in the topic,such as the preference structure in which decision-makers’opinions are modeled,the group decision rules used to define the decision making process,the techniques applied to verify the quality of these models and their applications to real world problems solving.Afterwards,a critical analysis of the main limitations of the existing proposals is developed.Finally,taking into account these limitations,new research lines for LSGDM are proposed and the main challenges are stressed out.
Diego García-ZamoraAlvaro LabellaWeiping DingRosa M.RodríguezLuis Martínez
关键词:CHALLENGES
基于改进PSO-SVM算法的帕金森疾病诊断研究被引量:6
2019年
针对帕金森疾病的病因不明确、临床表现性多样,容易造成医生误判、漏判的问题,论文提出一种基于改进的PSO-SVM算法(IMPSO-SVM)对帕金森疾病进行诊断,用来提高对帕金森疾病的识别精度。该算法对不同性能的粒子动态分配惯性权重和学习因子,提高支持向量机模型的学习能力和泛化能力。最后将论文提出的IMPSO-SVM算法应用到帕金森疾病临床表现的数据上并通过实验表明该算法与经典的基于粒子群优化的支持向量机(PSO-SVM)算法和基于遗传优化的支持向量机(GA-SVM)算法相比,在预测精度和执行效率上都有所提高。因此该算法可作为辅助医生诊断帕金森疾病的一种有效方法。
张琼丁卫平景炜余利国
关键词:改进粒子群算法支持向量机惯性权重
基于自适应PSO的改进K-means算法及其在电子病历聚类分析应用被引量:8
2019年
针对传统的K-means算法在过分依赖初始聚类中心选取方面的不足,论文提出了一种基于自适应PSO的K-means聚类算法。该算法设计了一种自适应惯性权重函数对PSO进行动态调整,然后与K-means算法融合,使K-means的各个初始聚类中心能自适应生成,达到全局最优,最后将上述改进的聚类算法应用于医学电子病历数据病症的聚类处理。实验结果表明该算法具有更高的电子病历病症聚类准确率和执行效率。
沐燕舟丁卫平高峰余利国张琼
关键词:惯性权重K-MEANS算法
共1页<1>
聚类工具0