Flow field around a two-bladed horizontal-axis wind turbine(HAWT)is simulated at various tip speed ratios to investigate its wake characteristics by analyzing the tip and root vortex trajectories in the nearwake,as well as the vertical profiles of the axial velocity.Results show that the pitch of the tip vortex varies inversely with the tip speed ratio.Radial expansion of the tip vortices becomes more obvious as the tip speed ratio increases.Tip vortices shed not exactly from the blade tip but from the blade span of 96.5%—99%radius of the rotor.The axial velocity profiles are transformed into V-shape from W-shape at the distance downstream of eight rotor diameters due to the momentum recovery.
Wind turbine blades are inevitable to be eroded in wind-sand environment,so it is crucial to identify the flow conditions under which the erosion happens.Here,the effect of the sand diameter on wind turbine airfoil is first investigated.When the sand diameter is less than 3μm,the sands will bypass the airfoil and no erosion occurs.When the sand diameter is larger than 4μm,the sand grains collide with the airfoil and the erosion happens.Thus,there must be a critical sand diameter between 3μm and 4μm,at which the erosion is initiated on the airfoil surface.To find out this critical value,aparticle Stokes number is introduced here.According to the range of the critical sand diameter mentioned above,the critical value of particle Stokes number is reasonably assumed to be between 0.007 8and 0.014.The assumption is subsequently validated by other four factors influecing the erosion,i.e.,the angle of attack,relative thickness of the airfoil,different series airfoil,and inflow velocity.Therefore,the critical range of Stokes number has been confirmed.