Tin dioxide(SnO2) and La-doped(1%,5%,10% in mass ratio) SnO2 samples were prepared via a hydrothermal method. The as-prepared powders were characterized by X-ray diffraction(XRD) and scanning electron microscopy(SEM) . Results showed that the particle size of SnO2 decreased gradually with the increase of the doped La element. When used as anode materials of Li ion battery,the La-doped samples exhibited better cycling performance than the pure SnO2,and the cycling performance of the La-doped samples got better and better with the increase of the doped La. The better electrochemical performance of the doped material could be attributed to the doping of La element,which not only enabled SnO2 powders to have a good dispersivity but also reduced their particle size.
Pure SnO2 and Ce-doped(1%,4%,7%,10% in mass ratio) SnO2 powders were prepared by a simple sol-gel method.The as-prepared samples were characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM),and Brunauer-Emmett-Teller(BET) specific surface area analyzers.Results showed that the 7% Ce-doped sample has a particle size of 0.1-0.3 μm with a narrow particle size distribution while the pure SnO2 was consisted of large agglomerated particles with a diameter up to several micrometers.When used as the catalyst to degrade methyl orange(MO),the 7% Ce-doped sample showed best photocatalytic property.These properties can be attributed to the large surface area and small particle size of the 7% Ce-doped sample.
Nd-doped(2%,5%,10% in mass ratio) SnO2 powders were prepared via a facile hydrothermal procedure.The as-prepared samples were characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM),and Brunauer-Emmett-Teller(BET) specific surface area analyzers.Results showed that the Nd-doped SnO2 samples had more uniform and smaller primary particles compared with the pure sample,the particle size of the doped SnO2 decreased gradually with the increase of Nd,and the specific surface area also increased with the increase of the doped Nd.When used as gas sensing materials,the 5% and 10% Nd-doped sample showed high sensitivity and selectivity to ethanol.Furthermore,the Nd-doped sample showed fast response and recovery time to ethanol gas.This could be attributed to their small diameter,large surface area and Nd element doping.