The source water in one forest region of the Northeast China had very high natural organic matter(NOM) concentration and heavy color during snowmelt period. The efficiency of five combined treatment processes was compared to address the high concentration of NOM and the mechanisms were also analyzed. Conventional treatment can hardly remove dissolved organic carbon(DOC) in the source water. KMn O4pre-oxidization could improve the DOC removal to 22.0%. Post activated carbon adsorption improved the DOC removal of conventional treatment to 28.8%. The non-sufficient NOM removal could be attributed to the dominance of large molecular weight organic matters in raw water, which cannot be adsorbed by the micropore upon activated carbon. O3+ activated carbon treatment are another available technology for eliminating the color and UV254 in water. However, its performance of DOC removal was only 36.4%, which could not satisfy the requirement for organic matter. The limited ozone dosage is not sufficient to mineralize the high concentration of NOM. Magnetic ion-exchange resin combined with conventional treatment could remove 96.2%of color, 96.0% of UV254 and 87.1% of DOC, enabling effluents to meet the drinking water quality standard. The high removal efficiency could be explained by the negative charge on the surface of NOM which benefits the static adsorption of NOM on the anion exchange resin. The results indicated that magnetic ion-exchange resin combined with conventional treatment is the best available technology to remove high concentration of NOM.
Powdered activated carbon(PAC) adsorption of two fishy odorants, trans,trans-2,4-heptadienal(HDE) and trans,trans-2,4-decadienal(DDE), was investigated. Both the pseudo first-order and the pseudo second-order kinetic models well described the kinetics curves, and DDE was more readily removed by PAC. In isotherm tests, both Freundlich and Modified Freundlich isotherms fitted the experimental data well. PAC exhibited a higher adsorption capacity for DDE than for HDE, which could be ascribed to the difference in their hydrophobicity. The calculated thermodynamic parameters(ΔG^0, ΔH^0, and ΔS^0) indicated an exothermic and spontaneous adsorption process. PAC dosage, p H, and natural organic matter(NOM) presence were found to influence the adsorption process. With increasing PAC dosage, the pseudo first-order and pseudo second-order rate constants both increased. The value of p H had little influence on HDE or DDE molecules but altered the surface charge of PAC, and the maximum adsorption capacity occurred at p H 9. The presence of NOM, especially the fraction with molecular weight less than1 k Dalton, hindered the adsorption. The study showed that preloaded NOM impaired the adsorption capacity of HDE or DDE more severely than simultaneously fed NOM did.
Advanced water treatment is commonly used to remove micropollutants such as pesticides,endocrine disrupting chemicals,and disinfection byproducts in modem drinking water treatment plants.However,little attention has been paid to the changes in the genotoxicity of substances remaining in the water following the different water treatment processes.In this study,samples were collected from three drinking water treatment plants with different treatment processes.The treated water from each process was analyzed and compared for genotoxicity and the formation of organic compounds.The genotoxicity was evaluated by an umu test,and the acute and chronic toxicity was analyzed through Ecological Structure-Activity Relationship(ECOSAR).The results of the umu test indicated that biological activated carbon reduced the genotoxicity by 38%,77%,and 46%in the three drinking water treatment plants,respectively,while chlorination increased the genotoxicity.Gas chromatograph-mass spectrometry analysis revealed that halogenated hydrocarbons and aromatic compounds were major contributors to genotoxicity.The results of ECOSAR were not consistent with those of the umu test.Therefore,we conclude that genotoxicity cannot be determined using ECOSAR.
The adsorption of six kinds of chlorophenols on pristine, hydroxylated and carboxylated single-walled carbon nanotubes(SWCNTs) has been investigated. Pseudo-first order and pseudo-second order models were used to describe the kinetic data. All adsorption isotherms were well fitted with Langmuir, Freundlich and Polanyi–Manes models, due to surface adsorption dominating the adsorption process. The close linear relationship between log Kowand log Kdsuggested that hydrophobicity played an important role in the adsorption. The SWCNTs' adsorption capacity for chlorophenols was weakened by addition of oxygen-containing functional groups on the surface, due to the loss of specific surface area, the increase of hydrophilicity and the reduction of π–π interaction. The best adsorption capacity of pristine SWCNTs, SWCNT-OH and SWCNT-COOH for six chlorophenols varied from 19 to 84 mg/g, from 19 to 65 mg/g and from 17 to 65 mg/g,respectively. The effect of pH on the adsorption of 2,6-dichlorophenol(2,6-DCP), was also studied. When p H is over the pK aof 2,6-dichlorophenol(2,6-DCP), its removal dropped sharply. When ionic strength increased(Na Cl or KCl concentration from 0 to 0.02 mmol/L),the adsorption capacity of 2,6-DCP on pristine SWCNTs decreased slightly. The comparison of chlorophenols adsorption by SWCNTs, MWCNTs and PAC was made, indicating that the adsorption rate of CNTs was much faster than that of PAC. The results provide useful information about the feasibility of SWCNTs as an adsorbent to remove chlorophenols from aqueous solutions.