9,10-Phenanthrenequinone(PQ) and benzil are important a-diketones. This manuscript explains the first comparison of PQ and benzil molecular properties. We have used 1H NMR, 13C NMR, 1H-IH COSY, HMBC, HMQC, UV-Vis absorption and emission, CV and TGA experiments to study PQ and benzil that provided the following novel results. (1) The 1H NMR(CDC13) of PQ show δ 8.19(H1), 8.02(H4), 7.72(H3), 7.47(H2) instead of an earlier reported 8.25(H4), 8.08(H1), 7.80(H2), 7.55(H3); (2) in the 13C NMR(CDCl3), the C9/C10(C=O) signal of PQ appears upfield(6 180.3) compared to C9/Cl0(C=O) signal of benzil(6 194.5), which shows higher electrophilic character(more attractive for nucleophiles) of C9/C10(C=O) of benzil; (3) the first 2max for the UV-Vis absorption and emission of PQ are blue-shifted compared to benzil despite increased conjugation attributed to the different symmetries(C2v for PQ and C2h for Benzil) of the two molecules; (4) the emission spectrum of benzil is broader compared to that of PQ due to slower relaxation of the excited state; (5) The CV study shows that PQ and benzil are good electron acceptors and PQ shows a better reduction process than benzil due to an extra ring that provides stability for the reduced species(mono or diradical anions); (6) TGA shows the higher thermal stability of PQ than benzil attributed to the presence of phenanthrene unit in PQ.
Organic crystals constructed by pi-conjugated molecules have been paid great attention to in the field of organic optoelectronic materials. The superiorities of these organic crystal materials, such as high thermal stability, highly ordered structure, and high carrier mobility over the amorphous thin film ma-terials, make them attractive candidates for optoelectronic devices. Single crystal with definite struc-ture provides a model to investigate the basic interactions between the molecules (supramolecular interaction), and the relationship between molecular stacking modes and optoelectronic performance (luminescence and carrier mobility). Through modulating molecular arrangement in organic crystal, the luminescence efficiency of organic crystal has exceeded 80% and carrier mobility has been up to the level of 10 cm2·V?1·s?1. Amplified stimulated emission phenomena have been observed in many crys-tals. In this paper, we will emphatically introduce the progress in optoelectronic functional organic crystals and some correlative principle.