The martensitic transformation in Co37Ni34Al29 ribbon is characterized in detail by means of in-situ thermostatic x-ray diffraction and magnetic measurements.The results show a structural transition from the body-centred cubic to martensite with a tetragonal structure during cooling.Comparison between the results of the diffraction intensity with the magnetic susceptibility measurements indicates that the martensitic transformation takes place in several different steps during cooling from 273 to 163 K.During heating from 313 to 873 K,the peak width becomes very wide and the intensity turns very low.The γ-phase (face-centred cubic structure) emerges and increases gradually with temperature increasing from 873 to 1073 K.
Pure Ti plate surfaces are micro-ablated by femtosecond lasers in the ambience of hydroxyapatite suspension. It is found that three-stage hierarchical surface structures are produced with various laser energies. When the laser energy is 150μJ, a lava-like structure with a distribution of nanoholes is dispersed evenly on the laser ablated surface. While in the case of 300 μJ, the grooves-and-islands micro-patterns covered with nanoparticles are generated on the surface. Remarkably, Ca/P based substances are revealed to firmly deposit on the micro-structured surfaces. More phosphate growth is seen for the higher laser energy. Discussions suggest that the additional elements deposition could be attributed to the chemical reaction of plasma related ions in the suspension and their subsequent crystallisation on the fresh surfaces of Ti plate due to the femtosecond laser ablation.
The effects of femtosecond laser ablation on the surface characteristics and microstructure of a bulk TiCuPdZr glass alloy were investigated. The heat influence zone of femtosecond laser ablated with a laser energy of 100 μJ exhibits a ripple-like feather, while a porous structure appears on the surface of the specimen ablated by a 200 μJ femtosecond laser. The contents of Ti, Zr, and Pd on the ablated surface decrease and that of Cu increases with increasing laser energy. The crystallization process occurs on the glass alloy specimens during femtosecond laser ablation, and the crystallinity of a 100 μJ femtosecond laser-ablated specimen is greater than that of a 200 μJ femtosecond laser-ablated one.
WANG HongshuiLIANG ChunyongCHEN XueguangWANG LeiYANG YangYANG JianjunZHU ShengliLI Changyi