前期研究工作提出了以预测均方根相对误差最小为回归目标的方法(Minimization of prediction relative error,MPRE),它能使得预测结果的均方根相对误差更小。偏最小二乘法(Partial least squares,PLS)是以预测均方根误差为回归目标,能使得预测结果的均方根误差更小。基于多模型结合的思想,提出将MPRE与PLS相结合的双模型结合多元校正方法。本方法步骤为:(1)分别采用MPRE与PLS法对校正集建模;(2)计算阈值;(3)分别采用已建立好的MPRE与PLS模型进行预测;(4)将预测结果与阈值进行比较,得到预测结果。通过对酒精的近红外光谱与汽油紫外光谱进行定量分析结果表明,本方法可进一步减小预测均方根误差与相对误差。