Based on our previously proposed Wigner operator in entangled form, we introduce the generalized Wigner operator for two entangled particles with different masses, which is expected to be positive-definite. This approach is able to convert the generalized Wigner operator into a pure state so that the positivity can be ensured. The technique of integration within an ordered product of operators is used in the discussion.
Based on the displacement-squeezing related squeezed coherent state representation |z〉g and using the technique of integration within an ordered product of operators, this paper finds a generalized Fresnel operator, whose matrix element in the coordinate representation leads to a generalized Collins formula (Huygens-Fresnel integration transformation describing optical diffraction). The generalized Fresnel operator is derived by a quantum mechanical mapping from z to sz -- rz^* in the |Z〉g representation, while |z〉g in phase space is graphically denoted by an ellipse.
By virtue of the completeness of Wigner operator and Weyl correspondence we construct a general equation for deriving pure state density operators. Several important examples are considered as the applications of this equation, which shows that our approach is effective and convenient for deducing these entangled state representations.
We newly construct two mutually-conjugate tripartite entangled state representations, based on which we propose the formulation of three-mode entangled fractional Fourier transformation (EFFT) and derive the transformation kernel. The EFFT's additivity property is proved and the eigenmode of EFFT is derived. As an application, we calculate the EFFT of the three-mode squeezed vacuum state.