Molecular aggregates in conjugated polymer(CP) solution can propagate into mesoscale morphology of the relevant film and further dominate the optoelectronic property. Herein, we probed the aggregation behavior of poly(9,9-dioctylfluorene-2,7-diyl)(PFO) and studied its influence on the photophysical property in 1,2-dichloroethane(DCE) solution, where the contents of β-phase or-aggregates increased with prolonged aging time. Thereinto, high quality β-film was fabricated from DCE solution with critical aggregate time of 6 min. The film exhibited excellent surface morphology and characteristic emission of β-phase. Meanwhile, films prepared from aged DCE solutions exhibited high crystallinity, which was promising to obtain higher photoluminance efficiency and charge transport ability simultaneously. Therefore, it is significant to get deep insight into the aggregation behavior of CP, which is involved not only with the solution-processing technology of plastic device, but also with the optoelectronic property of CP.
Shape persistent conformations reduce the complexity of polymer materials. Herein, we propose a concept on the nanopolymer that is a nanoscale polymer chain with the repeat units of nanomonomers, In this article, a soluble organic nanopolymer of wide bandgap semiconductors was synthesized by the Yamamoto polymerization of nanogrid monomer as the repeat units with the rectangle size of -1.7 nm × 1.2 nm. The alkyl side chain substituent at 9-position of fluorenes guarantees the polygrid with excellent solubility. Tetrafluorenes in the conjugation-interrupted backbones of polygrid acts as the active light-emitting centers without obvious green band in the fluorescence spectra of the films after 10 h annealing at 180 ℃, indicating this nanopolymer exhibits excellent spectral stability. Such soluble nanopolymers will be the fifth- generation of macromolecular materials with a potential character of overall performance improvement.
A simple and effective method for the preparation of amphiphilic graphene(AG)is presented under an organic solvent-free synthetic condition.The synthetic route first involves a cyclization reaction between carboxylic groups on graphene oxide and the amino groups on 5,6-diaminopyrazine-2,3-dicarbonitrile,and subsequent reduction by hydrazine.Results of UV-vis spectroscopy,Fourier transformed infrared spectroscopy(FT-IR),X-ray photoelectron spectroscopy(XPS),thermogravimetric analysis(TGA)and Raman spectroscopy have confirmed that the covalent functionalization of graphene can be achieved through the formation of imidazo[4,5-b]pyrazine on the graphene sheets.As a result,AG can be successfully dispersed in water and common organic solvents.This work successfully provides a facile and efficient way to fabricate AG and may extend the potential applications of graphene-based materials in nanoelectronic devices,polymer fillers and biological field.
Abstract In this study, a kind of fluorinated copolyfluorene, named poly[(4-(octyloxy)-9,9-diphenylfluorene-2,7-diyl)-alt- (2,3,5,6-tetrafluoro-1,4-phenylene)] (PODPF-TFP), is synthesized by facile palladium-based direct aromatization. Compared to the non-fluorinated counterpart, poly[(4-(octyloxy)-9,9-diphenylfluorene-2,7-diyl)-alt-(p-phenylene)] (PODPF-P), deeper HOMO/LUMO energy level combined with steric hindrance effect endow PODPF-TFP with excellent spectra and morphology stability. Finally, organic field-effect transistor (OFET) memory devices are fabricated with PODPF-P/PODPF- TFP as the dielectric layers, and they both exhibit flash type storage characteristic. Owing to the electronegativity of fluorine atom, the device based on PODPF-TFP exhibits larger memory window and more stable Ion/Ioff ratio during a retention time of 10^4 s as well as a better aging stability. The present study suggests that fluorinated p-n copolyfluorene electrets could enhance the capabilities of charge trapping and storage, which are promising for OFET memory devices.
Bin LiuYan BaoHai-feng LingWen-sai ZhuRui-jun GongJin-yi Lin解令海仪明东黄维
Molecular bulks are favorable for the thermal and morphological stability in organic wide-bandgap semiconducting polymers with potential applications in both information and energy electronics. In this review, we present our progress in the design of fluorene-based bulky semiconductors with a fractal four-element pattern. Firstly, we established one-pot methods to spirofluorenes, especially spiro[fluorene-9,9'-xanthene] (SFX) serving as the next-generation spiro-based semiconductors. Secondly, we observed the supramolecular forces at the bulky groups and discovered the supramolecular steric hindrance (SSH) effect on polymorphisms, nanocrystals as well as device performance. Thus, a synergistically molecular attractor-repulsor theory (SMART) was proposed for the control of nanocrystal morphology, thin film phase and morphology. Thirdly, the third possible type of defects has been identified to generate green band (g-band) emission in wide- bandgap semiconductors by the introduction of molecular strain design of cyclofluorene. Finally, the first bulky polydiarylfluorene with highly crystalline and β conformation was achieved by an attractor-repulsor design of tadpole-shape monomer, which offered an effective platform to fabricate stable wide-bandgap semiconducting devices. All the discoveries offer the solid basis to break through bottlenecks of organic/polymer wide-bandgap semiconductors by the improvements of overall performances.