This paper reports a cold atmospheric pressure DC-driven air plasma brush. Three stainless steel needles are symmetrically mounted on a slot shaped PVC slab to act as the elec- trodes. The brush driven by a direct current (DC) power supply can generate an air plasma glow up to 30 mm wide with no inert gas addition and no air flow supplement. The plasma glow appears uniform no matter what kinds of material are processed. The measured current and the simulated current all show that each pulsed discharge including two peaks always oc- curs for different gaps between electrodes. Emission spectra measurement result shows that the obtained rotational temperatures are 300 K and the vibrational temperatures are 2250 K. Some reactive species are presented in the plasma glow, which suggest that the proposed plasma brush is beneficial to practical applications.
The influence of the gap on the absorption performance of the conventional split ring resonator(SRR) absorber is investigated at microwave frequencies. Our simulated results reveal that the geometry of the square SRR can be equivalent to a Jerusalem cross(JC) resonator and its corresponding metamaterial absorber(MA) is changed to a JC absorber. The JC MA exhibits an experimental absorption peak of 99.1% at 8.72 GHz, which shows an excellent agreement with our simulated results. By simply assembling several JCs with slightly different geometric parameters next to each other into a unit cell, a perfect multi-band absorption can be effectively obtained. The experimental results show that the MA has four distinct and strong absorption peaks at 8.32 GHz, 9.8 GHz, 11.52 GHz and 13.24 GHz. Finally, the multi-reflection interference theory is introduced to interpret the absorption mechanism.
To reduce the cost, size and complexity, a consumer digital camera usually uses a single sensor overlaid with a color filter array(CFA) to sample one of the red-green-blue primary color values, and uses demosaicking algorithm to estimate the missing color values at each pixel. A novel image correlation and support vector machine(SVM) based edge-adaptive algorithm was proposed, which can reduce edge artifacts and false color artifacts, effectively. Firstly, image pixels were separated into edge region and smooth region with an edge detection algorithm. Then, a hybrid approach switching between a simple demosaicking algorithm on the smooth region and SVM based demosaicking algorithm on the edge region was performed. Image spatial and spectral correlations were employed to create middle planes for the interpolation. Experimental result shows that the proposed approach produced visually pleasing full-color result images and obtained higher CPSNR and smaller S-CIELAB*ab?E than other conventional demosaicking algorithms.