Femtoscience offers a unique way to understand the dynamics in physics, chemistry and biology. This subject focuses on the process happening at femto-to pico-second time scale by femtosecond optical methods. Widely used in chemistry it reveals chemical reactions, including bond breaking, forming, and stretching, which happens at an ultrafast time scale. Femtoscience is also important in the biological system, for example, light harvesting system and vision system. Femtoscience in physics is also widely used, but it is not studied in this paper. Instead, we report new advances in femtochemistry and femtobiology, including structural dynamics, coherent control, enzyme function dynamics and hydration in the protein system. We also introduce attosecond science, focusing on electron dynamics at an extreme short time scale.
Internal solvation of protein was studied by site-directed mutagenesis, with which an intrinsically fluorescent probe,tryptophan, is inserted into the desired position inside a protein molecule for ultrafast spectroscopic study. Here we review this unique method for protein dynamics research. We first introduce the frontiers of protein solvation, site-directed mutagenesis, protein stability and characteristics, and the spectroscopic methods. Then we present time-resolved spectroscopic dynamics of solvation dynamics inside cavities of active sites. The studies are carried out on a globular protein, staphylococcal nuclease. The solvation at sites inside the protein molecule's cavities clearly reveals characteristics of the local environment. These solvation behaviors are directly correlated to enzyme activity.
This paper studies the intramolecular photoinduced electron-transfer (PET) of covalent bonded azobenzene-perylene diimide (AZO-PDI) in solvents by using steady-state and time-resolved fluorescence spectroscopy together with ultrafast transient absorption spectroscopic techniques. Fast fluorescence quenching is observed when AZO-PDI is excited at characteristic wavelengths of AZO and perylene moieties. Reductive electron-transfer with transfer rate faster than 10^11 s^-1 is found. This PET process is also consolidated by femtosecond transient absorption spectra.