This work addressed the multi-objective optimization of a biogas production system considering both environmental and economic criteria. A mixed integer non-linear programming(MINLP) model was established and solved with non-dominated sorting genetic algorithm Ⅱ, from which the Pareto fronts, the optimal technology combinations and operation conditions were obtained and analyzed. It's found that the system is feasible in both environmental and economic considerations after optimization. The most expensive processing section is decarbonization; the most expensive equipment is anaerobic digester; the most power-consuming processing section is digestion, followed by decarbonization and waste management. The positive green degree value on the process is attributed to processing section of digestion and waste management. 3:1 chicken feces and corn straw, solar energy, pressure swing adsorption and 3:1 chicken feces and rice straw, solar energy, pressure swing adsorption are turned out to be two robust technology combinations under different prices of methane and electricity by sensitivity analysis. The optimization results provide support for optimal design and operation of biogas production system considering environmental and economic objectives.
Deep desulfurization of liquid fuels is an important and challenging issue in worldwide petroleum refining industry.Extraction and catalytic oxidative desulfurization(ECODS)of liquid fuels using a series of ionic liquids(ILs)with two functionalized groups,such as[(CH2)2COOHmim]Cl/n Fe Cl3,[(CH2)2COOHmim]Cl/n Zn Cl2,and[Amim]Cl/n Fe Cl3,was studied.In the ECODS,the ILs were used as both extractant and catalyst and 30 wt%hydrogen peroxide(H2O2)solution as oxidant.The effects of molar ratios of[(CH2)2COOHmim]Cl(or[Amim]Cl)to Fe Cl3(or Zn Cl2)in ILs,H2O2/sulfur(O/S)molar ratio,reaction temperature,and the nature of sulfur compounds on sulfur removal were investigated.The natures of the functional groups(–COOH,–CH2–CH=CH2)in cations and the acid strength of anions play important roles in the ECODS and affect the reaction time,temperature,and desulfurization efficiency of different substrates.Also,nitrogen-containing compounds(pyridine,pyrrole,and quinoline)could be removed simultaneously in the ECODS and had different effects on dibenzothiophene removal.
NIE YiGONG XueGAO Hong ShuaiZHANG Xiang PingZHANG Suo Jiang
The superstructure optimization of biomass to biomethane system through digestion is conducted in this work. The system encompasses biofeedstock collection and transportation, anaerobic digestion, biogas upgrading, and digestate recycling. We propose a multicriteria mixed integer nonlinear programming(MINLP) model that seeks to minimize the energy consumption and maximize the green degree and the biomethane production constrained by technology selection, mass balance, energy balance, and environmental impact. A multi-objective MINLP model is proposed and solved with a fast nondominated sorting genetic algorithm Ⅱ(NSGA-Ⅱ). The resulting Pareto-optimal surface reveals the trade-off among the conflicting objectives. The optimal results indicate quantitatively that higher green degree and biomethane production objectives can be obtained at the expense of destroying the performance of the energy consumption objective.
Nana YanBaozeng RenBin WuDi BaoXiangping ZhangJingheng Wang