您的位置: 专家智库 > >

国家教育部博士点基金(20100074120010)

作品数:2 被引量:9H指数:2
相关作者:卢小萍侍洪波杨文更多>>
相关机构:华东理工大学更多>>
发文基金:上海市教育委员会重点学科基金上海市自然科学基金国家教育部博士点基金更多>>
相关领域:化学工程自动化与计算机技术更多>>

文献类型

  • 2篇中文期刊文章

领域

  • 1篇化学工程
  • 1篇自动化与计算...

主题

  • 1篇丢包
  • 1篇一致性
  • 1篇网络
  • 1篇网络丢包
  • 1篇滤波
  • 1篇卡尔曼
  • 1篇卡尔曼滤波
  • 1篇感器
  • 1篇BASED_...
  • 1篇GROUP
  • 1篇IMPROV...
  • 1篇传感
  • 1篇传感器
  • 1篇传感器网
  • 1篇传感器网络
  • 1篇AN
  • 1篇OUTLET

机构

  • 1篇华东理工大学

作者

  • 1篇杨文
  • 1篇侍洪波
  • 1篇卢小萍

传媒

  • 1篇Chines...
  • 1篇中南大学学报...

年份

  • 2篇2012
2 条 记 录,以下是 1-2
排序方式:
Soft Sensor for Ammonia Concentration at the Ammonia Converter Outlet Based on an Improved Group Search Optimization and BP Neural Network被引量:5
2012年
The ammonia synthesis reactor is the core unit in the whole ammonia synthesis production. The ammonia concentration at the ammonia converter outlet is a significant process variable, which reflects directly the production efficiency. However, it is hard to be measured reliably online in real applications. In this paper, a soft sensor based on BP neural network (BPNN) is applied to estimate the ammonia concentration. A modified group search optimization with nearest neighborhood (GSO-NH) is proposed to optimize the weights and thresholds of BPNN. GSO-NH is integrated with BPNN to build a soft sensor model. Finally, the soft sensor model based on BPNN and GSO-NH (GSO-NH-NN) is used to infer the outlet ammonia concentration in a real-world application. Three other modeling methods are applied for comparison with GSO-NH-NN. The results show that the soft sensor based on GSO-NH-NN has a good prediction performance with high accuracy. Moreover, the GSO-NH-NN also provides good generalization ability to other modeling problems in ammonia synthesis production.
阎兴頔杨文马贺贺侍洪波
带丢包一致性卡尔曼滤波算法优化被引量:4
2012年
针对无线传感网络在实际应用中存在的丢包问题,以最小化均方估计误差为目标,提出一种带丢包的最优一致滤波算法,对收敛性进行初步分析。应用数值仿真验证算法的稳定性,并与已有的经典滤波算法进行比较;当网络拓扑结构固定时,比较最优一致滤波算法与已有经典算法分别在系统稳定和不稳定状态下的估计性能;研究网络拓扑结构对算法的影响。研究结果表明:随着通信半径增大,算法估计精度越高。
卢小萍杨文侍洪波
关键词:一致性卡尔曼滤波传感器网络网络丢包
共1页<1>
聚类工具0