Glaciers in the Tomor region of Tianshan Mountains preserve vital water resources. However, these glaciers suffer from strong mass losses in the recent years because of global warming. From 2008 to 2009, a large-scale scientific expedition has been carried out in this region. As an individual reference glacier, the tongue area of Qingbingtan glacier No. 72 was measured by the high precise Real Time Kinematic-Global Position System (RTK-GPS). In this paper, changes of the tongue area of Qingbingtan glacier No.72 has been studied based on topographic map, remote sensing image and the survey during 2008-2009 field campaign. Results indicated that the ice surface-elevation of the tongue area changed - 0.22~0.14 m a-1 from 1964 to 2008. The estimated loss in ice volume was 0.0144-0.009 km3, which represented a ~20 % decrease from the 1964 volume and was equivalent to average annual mass balance of -0.204-0.12 m water equivalent for the tongue area during 1964-2oo8. Terminus retreated by 1852 m, approximately 41 m a-1, with the area reduction of 1.533 km2 (0.034 km2 a-0 from 1964 to 2009. Furthermore, the annual velocity reached to -70 m a-1. Comparing with the other monitored glaciers in the eastern Tianshan Mountains, Qingbingtan glacier No.72 experienced more intensive in shrinkage, which resulted from the combined effects of climate change and glacier dynamic, providing evidence of the response to climatic warming.
WANG PuyuLI ZhongqinLI HuilinWANG WenbinWANG Feiteng
Hydrograph separation is a fundamental catchment descriptor,revealing information about sources of water in runoff generation processes. The water isotopes are ideal tracers in studying hydrological processes since the isotope fractionation produces a natural labeling effect within the hydrologic cycle. The water isotope technique has become one of effective means for investigating complex hydrologic system on a catchment scale. This paper reviews the progress on the use of stable water isotope techniques in catchment hydrograph separation in last decades. Also,the isotope mixing model for hydrograph separation and its uncertainties are explained in detail. In future research,there are three hot issues in the use of isotopic hydrograph separation( IHS) : integrating new approaches into IHS,calibration and verification of IHS model and IHS application in large river basins.
The determination of total glacial volume is important for the observation of climatic change and its consequences such as global sea-level rise. The tongue area of Glacier No. 4 of Sigong River over Mt. Bogda, eastern Tianshan was surveyed by ground-penetrating radar (GPR) and real time kinematic (RTK)-global positioning system (GPS) during the summer campaign 2009. In order to calculate the glacier volume, both co-kriging algorithm and estimation based on the theory of perfectly plastic material were employed. Results indicated that the ice-thickness distribution of the investigated glacier ranges from 0 to 105.0 m, with the mean thickness of 27.6 m in 2009. The corresponding ice volume was -0.076 km3 (-0.068 km3 water equivalent). The bedrock topography shows more undulating than the glacier surface. The difference of the calculated ice volume in this study and the estimated value from the empirical formula is large. Therefore, it is urgent to validate the applicability of the ex- isting empirical formula.
Puyu WangZhongqin LiWenbin WangHuilin LiFeiteng Wang