Understanding the status and distribution of the micronutrient Zn in soils is important for managing plant growth and preventing soil pollution for agricultural irrigation systems in arid and semi-arid regions. In this study, a total of 195 soil samples from five soil layers (0-20, 20-40, 40-60, 60-80 and 80-100 cm) in the three land-use types (wasteland, forestland and cropland) after long-term agricultural fertilization and irrigation with Yellow River water were collected in the middle of the Hetao oasis, i.e. the Yongji irrigation sub-oasis. We analyzed the vertical and spatial distributions of Zn content and its relationship with soil properties to determine whether differences of Zn content existed in the soil profiles. The results revealed that the mean content of Zn was 107 mg/kg, 1.9 times higher than the background value (55.7 mg/kg) of the Hetao oasis and much lower than the secondary standard value (300 mg/kg) of the Chinese Environmental Quality Standard for Soils when pH〉7.5. Soil Zn contents were not significantly different and the coefficients of variation of Zn contents were less than 50% in the five soil layers. Soil Zn content was similar from southern to northern parts but increased from western to eastern parts in the sub-oasis. Soil Zn contents did not differ significantly among the three land-use types, but soil total nitrogen (TN) contents were significantly higher in the agriculturally managed forestland and cropland than in the wasteland (P〈0.05). Zn was significantly and positively correlated with TN (F=36.6, P〈0.001). The use of fertilizers may increase the content of Zn in soils, but flooding irrigation may minimize the differences in the spatial distribution of soil Zn content in the whole sub-oasis. This research is of important value for soil pollution control and sustainable land use management in arid and semi-arid regions.
Nutrient resorption is an important conservation mechanism for plants to overcome nutrient limitation in the less fertile area of desertifled land. In the semi-arid Horqin Sandy Land of Northern China, the shrub Artemisia ha/odendron usually colonizes into the bare ground of severely desertified land as a pioneer species. It is, therefore, expected that A. ha/odendron will be less dependent on current nutrient uptake through efficient and proficient re- sorption of nutrients. In this study, we found that averaged nitrogen (N) and phosphorus (P) concentrations in se- nesced leaves significantly varied from 12.3 and 1.2 mg/g in the shifting sand dune to 15.9 and 1.9 mg/g in the fixed sand dune, respectively, suggesting that foliar N and P resorption of A. ha/odendron were more proficient in the shifting sand dune. In particular, positive relationships between nutrient concentrations in senesced leaves and soil nutrient availability indicate that A. ha/odendron in infertile habitats is more likely to manage with a low level of nu- trients in senesced leaves, giving this species an advantage in infertile soil. Moreover, foliar N- and P-resorption efficiencies and proficiencies showed limited inter-annual variability although annual precipitation varied greatly among 2007-2009. However, N and P resorption of A. ha/oc/endron were not more efficient and proficient than those previously reported for other shrubs, indicating that the pioneer shrub in sand dune environments does not rely more heavily than other plants on the process of resorption to conserve nutrients. Incomplete resorption of nutrients in A. halodendron suggests that senesced-leaf fall would return litter with high quality to the soil, and thereby would indirectly improve soil nutrient availability. The restoration of desertified land, therefore, may be ac- celerated after A. halodendron pioneers into shifting sand dunes.
Quantification of deep drainage and the response of soil water content to rainfall patterns are critical for an effective management strategy of soil water conservation and groundwater utilization. However, there has been little information on how rainfall characteristics influence soil water dynamics and deep drainage in mobile sandy lands. We used an underground chamber to examine the responses of deep drainage and soil water content in mobile sandy lands to rainfall characteristics in Inner Mongolia during the growing seasons of 2010, 2011 and 2012. Results showed that rainfall in this area was dominated by small events (〈5 mm), which increased soil water con- tent in the surface soil layers (0-40 cm), but did not increase soil water content in the deeper soil layers (greater than 40 cm). Soil water content at the 0-100 cm depth increased significantly when the total amount of rain was 〉20 mm. Rainfall amount, intensity and the duration of dry intervals were significantly related to the soil water content in different soil layers. Deep drainage was significantly correlated with rainfall amount and intensity, but not with the duration of dry intervals. The coefficients of deep drainage in the mobile sandy lands ranged from 61.30% to 67.94% during the growing seasons. Our results suggested that rainfall infiltration in the mobile sandy lands had considerable potential to increase soil water storage while recharging the groundwater in this region.
Xin Ping LIUYu Hui HEXue Yong ZHAOTong Hui ZHANGLa Mei ZHANGYun Hua MAShu Xia YAOShao Kun WANGShui Lian WEI