N-valeronitrile-N'-methylimidazolium hexafluorophosphate ([C 4 CNmim]+ PF 6),as a novel ionic liquid with polar nitrile functional group,was prepared.The structure of the ionic liquid was characterized by using IR and 1 H NMR.As a medium,the ionic liquid plays an important role in copolymerization of carbon monoxide (CO) with styrene (St).Some synthetic conditions were determined,including the usage of ionic liquid,palladium composite catalyst and methanol,CO pressure,reaction time and reaction temperature.The influence of these factors on catalytic activity was analyzed.The results show that the catalytic activity has reached 1 724.1 gStCO/(gPd·h) and the catalyst could be reused 5 times under the optimal condition:composite catalyst 0.015 mmol,ionic liquid 3 mL,methanol 0.75 mL,CO pressure 2MPa,reaction time 2 h and reaction temperature 70℃.This CO/St copolymerization within [C 4 CNmim]+ PF 6 system could facilitate ionic liquids with efficient and economical applications to polymeric materials.
Room temperature ionic liquids as solvents for palladium-catalyzed copolymerization of carbon monoxide and styrene were prepared by reaction of aqueous lead tetrafluoroborate with correspond-ing chloride or bromide salts. The recyclability of palladium composite catalyst in various ionic liquids was investigated. [Pd(bipy)2][BF4]2 showed a lower catalytic activity than [Pd(bipy)2][PF6]2 in similar conditions, although the catalytic activity of each composite catalyst in ionic liquids still existed after 4 successive recycles. It was shown the catalytic activity of palladium composite catalyst was higher than that of the catalyst formed in situ from palladium acetate, 2,2′-bipyridyl, and HA (A=PF6-, BF4-) in ionic liquids. The effects of volume of ionic liquids, reaction time, and the dosage of benzoquinone on the copolymerization were also studied.
采用苯乙烯与二乙烯基苯交联合成聚苯乙烯树脂微球,通过一系列反应后得到表面接枝双齿氮的功能化树脂微球.以负载有乙酸钯的功能化树脂微球组成的催化体系催化一氧化碳和苯乙烯共聚合成聚酮.利用红外光谱和扫描电镜对树脂负载催化剂及聚合产物进行了表征.研究了催化体系中各组分用量及反应时间对共聚反应的影响.结果表明,树脂负载催化剂对聚酮合成反应具有较好的催化性能:当树脂用量为0.5 g、乙酸钯为22.4 mg时,聚酮产量达8.6606 g.
To lower the cost of polyketone synthesis, rare earth coordinate catalyst was introduced to the copolymerization of carbon monoxide (CO) and styrene (ST) to synthesize aliphatic polyketone STCO. The catalytic system was composed of rare earth neodymium acetate, yttrium acetate, 2,2'-bipyridine, p-toluensulfonic acid, cupric p-toluensulfonate, and 1 ,4-benzoquinone. The catalyst and the copolymer were characterized by infrared spectrum and X-ray photoelectron spectroscopy respectively. The effects of each component of catalytic system and the kinds of rare earth acetates on catalytic activity of copolymerization were investigated. The results show that the proposed rare earth has distinct catalytic activity in the copolymerization of CO and ST and the maximum activity can reach 303.3 gSTCO/(mol·h).
The dipping method was devised to deposit Pd onto carbon nanotube as supported catalyst(Pd/CNT) for the copolymerization of carbon monoxide(CO) and styrene(ST) towards the formation of polyketone(PK).The Pd/CNT was characterized by X-ray photoelectron spectroscopy(XPS),X-ray diffraction(XRD) and high-resolution transmission electron microscopy(HRTEM).The construction and crystallization property of PK were evaluated by Fourier transform infrared spectroscopy(FTIR),13C-nuclear magnetic resonance(NMR) and XRD,respectively.The catalyst showed excellent activity and reusability in promoting the fabrication of PK.It can be recycled 14 times with the highest total catalytic activity of 4 239.64 gPK/(gPd·h) at Pd content of 8.63wt%.The results indicate that the prepared catalyst is effective to catalyze the copolymerization of CO and styrene.
A series of electron donors,including 1,1-cyclopentanecarboxylic acid diethyl ester (CPCADEE),1,1cyclopentanedimethanol acetic diester (CPDMAD),1,1-biethoxymethyl pentane (BEMP),2,2-diethyl diethylmalonate (DEDEM)and 2,2-diethyl-1,3-propanediol acetic diester (DEPDADE),were synthesized by diethyl malonate (DEM).The purities and structures of the above products were characterized by gas chromatography (GC) and gas chromatography-mass spectrometer (GC-MS),respectively.Furthermore,the possible optimal three-dimensional structures of these donors were simulated by means of Gaussian 03 and Chem 3D.Then these electron donors were coordinated with tetrachloro titanium (TiCl 4) and chloride magnesium (MgCl 2)to obtain the catalysts for the polymerization of propylene.The catalytic activities and properties of polypropylene are greatly improved by adding external donor(ED) when CPCADEE or DEPDADE is used as internal donor(ID).However,when BEMP was used as ID,the highest catalytic activity is obtained without adding ED,which can reduce production costs and simplify catalytic synthesis.The experiments indicate that BEMP has the shortest distance of oxygen atoms and the highest electronegativity.