Photosynthesis in“green”seeds, such as rapeseed, soybean, and Arabidopsis, plays a substantial role in the improved efficiency of oil accumulation. However, the molecular mecha-nism underpinning the coordinated expression of fatty acid (FA) biosynthesis-and photosynthesis-related genes in such develop-ing seeds remains to be elucidated. Here, we found that seed-specific overexpression of BnWRI1, a WRI1 homolog from rapeseed (Brassica napus cv. ZGY2), results in enhanced chlorophyl content in developing seeds and increased oil content and seed mass in matured seeds. BnWRI1 was co-expressed with BnBCCP and BnCAB, two marker genes of FA biosynthesis and photosynthesis during seed development, respectively. Over-expression of BnWRI1 increased expression of both marker genes. Further, the nuclear-localized BnWRI1 protein was found to act as a transcription activator. It could bind to the GT1-element and/or GCC-box, which are widespread in the upstream regions of genes involved in FA biosynthesis and photosynthesis pathways. Accordingly, BnWRI1 could interact with promoters of BCCP2 and LHB1B2 in vivo. These results suggested that BnWRI1 may coordinate FA biosynthesis and photosynthesis pathways in developing seeds via directly stimulating expression of GT1-element and/or GCC-box containing genes.
Ribulose-1,5-bisphosphate carboxylase/oxygenase(Rubisco),which catalyzes the first step of CO fixation,is the ...
Xue-Long Wu,Zhi-Hong Liu,Si-Wei Yuan and Rui-Zhi Huang~* Key Laboratory of Plant Metabolic Engineering of Zhejiang Province,Institute of Virology and Biotechnology,Zhejiang Academy of Agricultural Sciences,310021 Hangzhou,China