Compared with gentle dip long-wall caving,the length of a working face in fully-mechanized top-coal caving for extremely steep and thick seams is short,while its horizontal section is high with increasing production.But the caving ratio is low,which might result in some disasters,such as roof falls,induced by local and large area collapse of the top coal in a working face and dangers induced by gas accumulation. After the development of cracks and weakening of the coal body,the tall,broken section of the top coal(a granular medium)of an extremely steep seam(over 60°)shows clear characteristics of nonlinear movement.We have thoroughly analyzed the geological environment and mining conditions of an excavation disturbed zone.Based on the results from a physical experiment of large-scale 3D modeling and coupling simulation of top coal-water-gas,we conclude that the weakened top coal can be regarded as a non-continuous medium.We used a particle flow code program to compare and analyze migration processes and the movements of a 30 m high section top coal over time before and after weakening of an extremely steep seam in the Weihuliang coal mine.The results of our simulation, experiment and monitoring show that pre-injection of water and pre-splitting blasting improve caving ability and symmetrical caving,relieve space for large area dynamic collapse of top coal,prolong migration time of noxious gases and release them from the mined out area and so achieve safety in mining.