Foley-Sammon linear discriminant analysis (FSLDA) and uncorrelated linear discriminant analysis (ULDA) are two well-known kinds of linear discriminant analysis. Both ULDA and FSLDA search the kth discriminant vector in an n-k+1 dimensional subspace, while they are subject to their respective constraints. Evidenced by strict demonstration, it is clear that in essence ULDA vectors are the covariance-orthogonal vectors of the corresponding eigen-equation. So, the algorithms for the covariance-orthogonal vectors are equivalent to the original algorithm of ULDA, which is time-consuming. Also, it is first revealed that the Fisher criterion value of each FSLDA vector must be not less than that of the corresponding ULDA vector by theory analysis. For a discriminant vector, the larger its Fisher criterion value is, the more powerful in discriminability it is. So, for FSLDA vectors, corresponding to larger Fisher criterion values is an advantage. On the other hand, in general any two feature components extracted by FSLDA vectors are statistically correlated with each other, which may make the discriminant vectors set at a disadvantageous position. In contrast to FSLDA vectors, any two feature components extracted by ULDA vectors are statistically uncorrelated with each other. Two experiments on CENPARMI handwritten numeral database and ORL database are performed. The experimental results are consistent with the theory analysis on Fisher criterion values of ULDA vectors and FSLDA vectors. The experiments also show that the equivalent algorithm of ULDA, presented in this paper, is much more efficient than the original algorithm of ULDA, as the theory analysis expects. Moreover, it appears that if there is high statistical correlation between feature components extracted by FSLDA vectors, FSLDA will not perform well, in spite of larger Fisher criterion value owned by every FSLDA vector. However, when the average correlation coefficient of feature components extracted by FSLDA vectors is at a low level, the performance of FSLD
This paper presents a new method for extract three-dimensional (3D) discrete spherical Fourier descriptors based on surface curvature voxels for pollen particle recognition. In order to reduce the high amount of pollen information and noise disturbance, the geometric normalized curvature voxels with the principal curvedness are first extracted to represent the intrinsic pollen volumetric data. Then the curvature voxels are decomposed into radial and angular components with spherical harmonic transform in spherical coordinates. Finally the 3D discrete Fourier transform is applied to the decomposed curvature voxels to obtain the 3D spherical Fourier descriptors for pollen recognition. Experimental results show that the presented descriptors are invariant to different pollen particle geometric transformations, such as pose change and spatial rotation, and can obtain high recognition accuracy and speed simultaneously.