High quality sub-monolayer, monolayer, and bilayer graphene were grown on Ru(0001). For the sub-monolayer graphene, the size of graphene islands with zigzag edges can be controlled by the dose of ethylene exposure. By increasing the dose of ethylene to 100 Langmuir at a high substrate temperature (800 ℃), high quality single-crystalline monolayer graphene was synthesized on Ru(0001). High quality bilayer graphene was formed by further increasing the dose of ethylene while reducing the cooling rate to 5 ℃/min. Raman spectroscopy revealed the vibrational states of graphene, G and 2D peaks appeared only in the bilayer graphene, which demonstrates that it behaves as the intrinsic graphene. Our present work affords methods to produce high quality sub-monolayer, monolayer, and bilayer graphene, both for basic research and applications.
Silicene, a two-dimensional(2D) honeycomb structure similar to graphene, has been successfully fabricated on various substrates. This work will mainly review the syntheses and the corresponding prope√rties o√f silicene and√ silice√ne–graphene layered structures on Ir(111) substrates. For silicene on Ir(111), the buckled(3 ×3) silicene/(7 ×7)Ir(111) configuration and its electronic structure are fully discussed. For silicene–graphene layered structures, silicene layer can be constructed underneath graphene layer by an intercalation method. These results indicate the possibility of integrating silicene with graphene and may link up with potential applications in nanoelectronics and related areas.
Efcient control of phonons is crucial to energy-information technology,but limited by the lacking of tunable degrees of freedom like charge or spin.Here we suggest to utilize crystalline symmetry-protected pseudospins as new quantum degrees of freedom to manipulate phonons.Remarkably,we reveal a duality between phonon pseudospins and electron spins by presenting Kramerslike degeneracy and pseudospin counterparts of spin-orbit coupling,which lays the foundation for“pseudospin phononics”.Furthermore,we report two types of three-dimensional phononic topological insulators,which give topologically protected,gapless surface states with linear and quadratic band degeneracies,respectively.Tese topological surface states display unconventional phonon transport behaviors attributed to the unique pseudospin-momentum locking,which are useful for phononic circuits,transistors,antennas,etc.Te emerging pseudospin physics ofers new opportunities to develop future phononics.
Four kinds of defects are observed in graphene grown on Ru (0001) surfaces. After cobalt deposition at room tem- perature, the cobalt nanoclusters are preferentially located at the defect position. By annealing at 530 ℃, cobalt atoms intercalate at the interface of Graphene/Ru (0001) through the defects. Further deposition and annealing increase the sizes of intercalated Co islands. This provides a method of controlling the arrangement of cobalt nanoclusters and also the den- sity and the sizes of intercalated cobalt islands, which would find potential applications in catalysis industries, magnetism storage, and magnetism control in future information technology.
Recent experimental breakthroughs open up new opportunities for magnetism in few-atomic-layer twodimensional(2 D) materials, which makes fabrication of new magnetic 2 D materials a fascinating issue.Here, we report the growth of monolayer VSe_2 by molecular beam epitaxy(MBE) method. Electronic properties measurements by scanning tunneling spectroscopy(STS) method revealed that the asgrown monolayer VSe_2 has magnetic characteristic peaks in its electronic density of states and a lower work-function at its edges. Moreover, air exposure experiments show air-stability of the monolayer VSe_2. This high-quality monolayer VSe_2, a very air-inert 2 D material with magnetism and low edge work function, is promising for applications in developing next-generation low power-consumption, high efficiency spintronic devices and new electrocatalysts.
The rise of topological insulators in recent years has broken new ground both in the conceptual cognition of condensed matter physics and the promising revolution of the electronic devices.It also stimulates the explorations of more topological states of matter.Topological crystalline insulator is a new topological phase,which combines the electronic topology and crystal symmetry together.In this article,we review the recent progress in the studies of SnTe-class topological crystalline insulator materials.Starting from the topological identifications in the aspects of the bulk topology,surface states calculations,and experimental observations,we present the electronic properties of topological crystalline insulators under various perturbations,including native defect,chemical doping,strain,and thickness-dependent confinement effects,and then discuss their unique quantum transport properties,such as valley-selective filtering and helicity-resolved functionalities for Dirac fermions.The rich properties and high tunability make SnTe-class materials promising candidates for novel quantum devices.
PtTe2 and PtSe2 with trigonal structure have attracted extensive research interests since the discovery of type-II Dirac fermions in the bulk crystals. The evolution of the electronic structure from bulk 3D topological semimetal to 2D atomic thin films is an important scientific question. While a transition from 3D type-II Dirac semimetal in the bulk to 2D semiconductor in monolayer(ML) film has been reported for PtSe2, so far the evolution of electronic structure of atomically thin PtTe2 films still remains unexplored.Here we report a systematic angle-resolved photoemission spectroscopy(ARPES) study of the electronic structure of high quality PtTe2 films grown by molecular beam epitaxy with thickness from 2 ML to 6 ML.ARPES measurements show that PtTe2 films still remain metallic even down to 2 ML thickness, which is in sharp contrast to the semiconducting property of few layer PtSe2 films. Moreover, a transition from 2D metal to 3D type-II Dirac semimetal occurs at film thickness of 4–6 ML. In addition, Spin-ARPES measurements reveal helical spin textures induced by local Rashba effect in the bulk PtTe2 crystal, suggesting that similar hidden spin is also expected in few monolayer PtTe2 films. Our work reveals the transition from2D metal to 3D topological semimetal and provides new opportunities for investigating metallic 2D films with local Rashba effect.