Two interplanetary shocks are examined to determine the responses of the magnetic field and plasma in the plasma sheet upon the shock impacts by using TC-1 observational data.The two shocks are observed by WIND on November 7,2004.Prior to and after the shock,the IMF is either weakly southward or northward.The responses of the plasma sheet to the two shocks are intense and much similar.When the shock interacts with the magnetosphere,the magnetic field impulsively increases 1-2 min after the geomagnetic field sudden impulse (SI) judged from the Sym-H index change,and the magnetic field line is stretched.On the other hand,all of the ion density,the ion temperature,and the velocity of ion flow in the plasma sheet increase.Interestingly,quasi-periodical oscillations of the ion flow are suddenly enhanced,and the plasma flow is basically perpendicular to the local magnetic field.The responses of the magnetic field and the plasma are nearly simultaneous.The responses in the plasma sheet are probably caused by the lateral compression due to the dynamic pressure enhancement downstream the shock when the shock propagates antisunward in the magnetosheath.
By analyzing hot ion and electron parameters together with magnetic field measurements from Cluster, an event of magnetopause crossing of the spacecraft has been investigated. At the latitude of about 40° and magnetic local time (MLT) of 13:20 during the southward interplanetary magnetic field (IMF), a transition layer was observed, with the magnetospheric field configuration and cold dense plasma features of the magnetosheath. The particle energy-time spectrograms inside the layer were similar to but still a little different from those in the magnetosheath, obviously indicating the solar wind entry into the magnetosphere. The direction and magnitude of the accelerated ion flow implied that reconnection might possibly cause such a solar wind entry phenomenon. The bipolar signature of the normal magnetic component BN in magnetopause coordinates further supported happening of reconnection there. The solar wind plasma flowed toward the magnetopause and entered the magnetosphere along the reconnected flux tube. The magnetospheric branch of the reconnected flux tube was still inside the magnetosphere after reconnection and supplied the path for the solar wind entry into the dayside magnetosphere. The case analysis gives observational evidence and more details of how the reconnection process at the dayside low latitude magnetopause caused the solar wind entry into the magnetosphere.
M. DunlopA. BaloghH. RèmeY. V. BogdanovaA. Fazakerley
Low frequency electromagnetic fluctuations in the vicinity of a magnetospheric substorm onset were investigated using simultaneous observations by THEMIS multiple probes in the near-Earth plasma sheet in the magnetotail.The observations indicate that in the vicinity of a substorm onset,kinetic Alfvén waves can be excited in the high-βplasma sheet(β=2μ0nT/B 2 ,the ratio of plasma thermal pressure to magnetic pressure)within the near-Earth magnetotail.The kinetic Alfvén wave has a small spatial scale in the high-βplasma.The parallel electric field accompanying kinetic Alfvén waves accelerates the charged particles along the magnetic field.The kinetic Alfvén waves play an important role in the substorm trigger process,and possibly in the formation of a substorm current wedge.
2009年2月21日THEMIS-C卫星在磁尾X=-15.7RE(RE为地球半径,1RE=6371km)观测到典型的磁通量绳事件.采用Grad-Shafranov重构技术研究该磁通量绳的特性、内部磁场和电流结构.研究表明,磁通量绳不变轴位于GSM(geocentric solar magnetospheric coordinates)坐标为(-0.3975,0.8905,0.2213)的方向,基本位于晨昏方向;通量绳的横截面尺度约为2RE,内部轴向磁通量为1.3×106Wb.与经验模型相比,在对磁通量绳几何形状不做约束的情况下,重构出磁尾X=-15.7RE处磁通量绳横截面上的磁场、电流强度分布图像.通量绳核心部位具有无力场位形结构,而随着径向距离的增加,磁场在偏离轴对称分布的区域逐渐表现为非无力位形.
On July 22, 2004, the WIND spacecraft detected a typical interplanetary shock. There was sustaining weak southward magnetic field in the preshock region and the southward field was suddenly enhanced across the shock front (i.e., southward turning). When the shock impinged on the magnetosphere, the magnetospheric plasma convection was abruptly enhanced in the central plasma sheet, which was directly observed by both the TC-1 and Cluster spacecraft located in different regions. Simultaneously, the Cluster spacecraft observed that the dawn-to-dusk electric field was abruptly enhanced. The variations of the magnetic field observed by TC-1, Cluster, GOES-10 and GOES-12 that were distributed in different regions in the plasma sheet and at the geosynchronous orbit are obviously distinct. TC-1 observations showed that the magnetic intensity kept almost unchanged and the elevation angle decreased, but the Cluster spacecraft, which was also in the plasma sheet and was further from the equator, observed that the magnetic field was obviously enhanced. Simultaneously, GOES-12 located near the midnight observed that the magnetic intensity sharply increased and the elevation angle decreased, but GOES-10 located in the dawn side observed that the magnetic field was merely compressed with its three components all sharply increasing. Furthermore, the energetic proton and electron fluxes at nearly all channels observed by five LANL satellites located at different magnetic local times (MLTs) all showed impulsive enhancements due to the compression of the shock. The responses of the energetic particles were much evident on the dayside than those on the nightside. Especially the responses near the midnight were rather weak. In this paper, the possible reasonable physical explanation to above observations is also discussed. All the shock-induced responses are the joint effects of the solar wind dynamic pressure pulse and the magnetic field southward turning.
YAO LiLIU ZhenXingZUO PingBingZHANG LingQianDUAN SuPing
Based on measurements of FGM and HIA on board TC-1 at its apogee on Septem-ber 14, 2004, we analyzed the ion high-speed flows in the near-Earth plasma sheet observed during the substorm expansion phase. Strong tailward high-speed flows (Vx ~ -350 km/s) were first seen at about X ~ -13.2 RE in near-Earth magnetotail, one minute later the flows reversed from tailward to earthward. The reversal process occurred quickly after the substorm expansion onset. The near-Earth magnetotail plasma sheet was one of key regions for substorm onset. Our analysis showed that the ion flow reversal from tailward to earthward was likely to be in close relation with the substorm expansion initiation and might play an important role in trigger-ing the substorm expansion onset.