In this study, the intensity of the trough over the Bay of Bengal (BBT) and its association with the southern China precipitation, the Madden-Julian Oscillation (MJO) and the Rossby wave propagation along the African-Asian subtropical Jet stream (AASJ) are investigated on the intraseasonal time scale. The results show that the intensity of the BBT affects the southern China precipitation more directly and to a greater degree than the MJO. The peak amplitude of the BBT tended to occur in phase-3 of the MJO. The strong BBT was substantially modulated by the Rossby wave propagation along the AASJ, which was triggered by the anomalous upstream circulation similar to the pattern of the North Atlantic Oscillation (NAO). Therefore, from the perspective of medium- and extended-range weather forecasts, the NAO- like pattern may be regarded as a precursory signal for the strong BBT and thus the southern China precipitation.
In this study, the cold ocean/warm land (COWL) pattern was identified from the leading empirical orthogonal function (EOF) of the monthly 1000-hPa geopotential height field poleward of 20°N. Traditionally, the leading EOF has been recognized as the Arctic Oscillation (AO), or Northern Annular Mode (NAM), which causes annular surface air temperature (SAT) anomalies over high-latitude regions of the Northern Hemisphere. A new finding of the present study is that the total AO events defined by the large AO index actually include a distinct type of events that are characterized by a less-annular spatial structure, i.e., the COWL pattern, which shows an NAO-like distribution in the Atlantic sector and a center of action over the North Pacific with the same sign as that over the Arctic. In addition, unlike canonical AO events, the COWL events also show a less-annular pattern in the stratosphere. Statistically, at least one-third of the AO events can be categorized as the COWL events. The SAT anomalies associated with the COWL pattern have an annular distribution over the high-latitude region of the two continents in the Northern Hemisphere. In contrast, if the COWL events are removed from the total AO events, the remainder shows less annular SAT anomalies. Thus, the typical annular SAT anomalies associated with AO events are in large part due to the contribution of the COWL pattern. Furthermore, the monthly variability and the interannual variability of all the AO events are equally important.
In this study,regional rainstorm events (RREs) in northeastern China associated with the activity of the Northeastern China Cold Vortex (NCCV) were investigated on a medium-range time scale.The RREs occurring in northeastern China could be categorized into three groups according to the distribution of heavy rainfall.The largest cluster is characterized by the rainstorm events that occur on the northwestern side of the Changbai Mountains along a southwest-northeast axis.These events occur most frequently during the post-meiyu period.The authors place particular emphasis on the RREs that belong to the largest cluster and are closely associated with the activity of the NCCV.These RREs were preconditioned by the transportation of substantial amounts of water vapor to which the anomalous western Pacific subtropical high (WPSH) contributed.The attendant anomalous WPSH was primarily driven by the anomalous transient eddy feedback forcing the nearby East Asian jet.The development of the NCCV circulation was concurrent with the RREs and acted as their primary causative factor.A perspective based on low-frequency dynamics indicates that Rossby wave packets emanated from the blocking-type circulation over northeastern Asia led to the development of the NCCV activity.