Gene expression in chloroplasts is regulated by many nuclear-encoded proteins. In this study, we isolated a rice (Oryza sativa subsp, japonica) mutant osotp51 with significant reduction in photosystem I (PSI). The osotp51 is extremely sensitive to light and accumulates a higher level of reactive oxygen species. Its leaves are almost albino when grown at 40 ~mol photons/m2 per s. However, grown at 4 umol photons/m2 per s, osotp51 has a similar phenotype to the wild-type. 77K chlorophyll fluorescence analysis showed a blue shift in the highest peak emission from PSI in osotp51. In addition, the level of PSI and PSII dimer is dramatically reduced in osotp51. OSOTP 51 encodes a pentatricopeptide repeats protein, homologous to organelle transcript processing 51 in Arabidopsis. Loss-of-function OSOTP51 affects intron splicing of a number of plastid genes, particularly the ycf3 coding a protein involved in the assembly of PSI complex. OSOTP51 is functionally conserved in higher plants. The mutation of osotp51 indirectly leads to a widespread change in the structure and functions of PSI, results in severe photoinhibition, and finally dies, even when grown under very low light intensity.
Jian-Wei Ye Zi-Ying Gong Chun-Guang Chen Hua-Ling Mi Gen-Yun Chen
Bisulfite at low concentrations(L-NaHSO3) increases cyclic electron transport around photosystem I(PSI) and photosynthesis.However,little is known regarding the detailed contribution of cyclic electron transport to the promoted photosynthesis by L-NaHSO3.In the present work,we used tobacco mutant defective in ndhC-ndhK-ndhJ(ndhCKJ) to investigate the role of NAD(P)H dehydrogenase(NDH)-dependent cyclic electron transport around PSI in an increase in photosynthesis by L-NaHSO3.After the treatment of tobacco leaves with L-NaHSO3(10 μmol L-1),the NDH-dependent cyclic electron transport,monitored by a transient post-illumination increase in Chl fluorescence and the amount of NDH,was notably up-regulated in wild type(WT).The NDH-dependent cyclic electron transport was severely impaired in ndhCKJ and was not significantly affected by treatment with L-NaHSO3.Accordingly,the NDH-dependent transthylakoid membrane proton gradient(pH),as reflected by the slow phase of millisecond-delayed light emission(ms-DLE),was increased by L-NaHSO3 in WT,but not in ndhCKJ;the enhancement of cyclic photophosphorylation(PSP) activity by L-NaHSO3 was more obvious in WT than ndhCKJ.The accumulation of both superoxide and hydrogen peroxide was reduced in WT when subjected to L-NaHSO3 treatment,but not in ndhCKJ.Furthermore,the increase of photosynthetic O 2 evolution rate by L-NaHSO3 was more significant in WT than in ndhCKJ.We therefore conclude that L-NaHSO3 alleviates the photo-oxidative damage by the enhancement of NDH-dependent cyclic PSP,thereby improving photosynthesis.