A continuous-discontinuous cellular automaton method is developed for rock initiation and propagation simulations, in which the level set method, discontinuous enrichment shape functions and discontinuous cellular automaton are combined. No renmshing is needed for crack growth analysis, and all calculations are restricted to cells without an assembled global stiffness matrix. The frictional contact theory is employed to construct the contact model of normal pressure and tangential shear on crack surfaces. A discontinuous cellular automaton updating rule suitable for frictional contact of rock is proposed simultaneously with Newton's iteration method for nonlinear iteration. Besides, a comprehensive fracturing criterion for brittle rock under compression-shear loading is developed. The accuracy and effectivenesss of the proposed method is proved by numerical simulation.
Discontinuities constitute an integral part of rock mass and inherently affect its anisotropic deformation behavior.This work focuses on the equivalent elastic deformation of rock mass with multiple persistent joint sets.A new method based on the space geometric and mechanical properties of the modified crack tensor is proposed,providing an analytical solution for the equivalent elastic compliance tensor of rock mass.A series of experiments validate the capability of the compliance tensor to accurately represent the deformation of rock mass with multiple persistent joint sets,based on conditions set by the basic hypothesis.The spatially varying rules of the equivalent elastic parameters of rock mass with a single joint set are analyzed to reveal the universal law of the stratified rock mass.