Attaining tritium self-sufficiency is an important mission for the Chinese Fusion Engineering Testing Reactor(CFETR) operating on a Deuterium-Tritium(D-T) fuel cycle. It is necessary to study the tritium breeding ratio(TBR) and breeding tritium inventory variation with operation time so as to provide an accurate data for dynamic modeling and analysis of the tritium fuel cycle. A water cooled ceramic breeder(WCCB) blanket is one candidate of blanket concepts for the CFETR. Based on the detailed 3D neutronics model of CFETR with the WCCB blanket,the time-dependent TBR and tritium surplus were evaluated by a coupling calculation of the Monte Carlo N-Particle Transport Code(MCNP) and the fusion activation code FISPACT-2007.The results indicated that the TBR and tritium surplus of the WCCB blanket were a function of operation time and fusion power due to the Li consumption in breeder and material activation.In addition, by comparison with the results calculated by using the 3D neutronics model and employing the transfer factor constant from 1D to 3D, it is noted that 1D analysis leads to an over-estimation for the time-dependent tritium breeding capability when fusion power is larger than 1000 MW.
In order to investigate the nuclear response to the water-cooled ceramic breeder blanket models for CFETR, a detailed 3D neutronics model with 22.5° torus sector was developed based on the integrated geometry of CFETR, including heterogeneous WCCB blanket models, shield, divertor, vacuum vessel, toroidal and poloidal magnets, and ports. Using the Monte Carlo N-Particle Transport Code MCNP5 and IAEA Fusion Evaluated Nuclear Data Library FENDL2.1, the neutronics analyses were performed. The neutron wall loading, tritium breeding ratio, the nuclear heating, neutron-induced atomic displacement damage, and gas production were determined. The results indicate that the global TBR of no less than 1.2 will be a big challenge for the watercooled ceramic breeder blanket for CFETR.
It can be difficult to calculate some under-sampled regions in global Monte Carlo radiation transport calculations. The global variance reduction(GVR) method is a useful solution to the problem of variance reduction everywhere in a phase space. In this research, a GVR procedure was developed and applied to the Chinese Fusion Engineering Testing Reactor(CFETR). A cylindrical CFETR model was utilized for comparing various implementations of the GVR method to find the optimum.It was found that the flux-based GVR method could ensure more reliable statistical results, achieving an efficiency being 7.43 times that of the analog case. A mesh tally of the scalar neutron flux was chosen for the GVR method to simulate global neutron transport in the CFETR model.Particles distributed uniformly in the system were sampled adequately through ten iterations of GVR weight window.All voxels were scored, and the average relative error was 2.4% in the ultimate step of the GVR iteration.
CFETR is the "ITER-like" China fusion engineering test reactor. The design of the breeding blanket is one of the key issues in achieving the required tritium breeding radio for the self-sufficiency of tritium as a fuel. As one option, a BIT (breeder insider tube) type helium cooled ceramic breeder blanket (HCCB) was designed. This paper presents the design of the BIT-HCCB blanket configuration inside a reactor and its structure, along with neutronics, thermo-hydraulics and thermal stress analyses. Such preliminary performance analyses indicate that the design satisfies the requirements and the material allowable limits.
China Fusion Engineering Test Reactor(CFETR) is an ITER-like fusion engineering test reactor that is intended to fill the scientific and technical gaps between ITER and DEMO.One of the main missions of CFETR is to achieve a tritium breeding ratio that is no less than 1.2to ensure tritium self-sufficiency.A concept design for a water cooled ceramics breeding blanket(WCCB) is presented based on a scheme with the breeder and the multiplier located in separate panels for CFETR.Based on this concept,a one-dimensional(1D) radial built breeding blanket was first designed,and then several three-dimensional models were developed with various neutron source definitions and breeding blanket module arrangements based on the 1D radial build.A set of nuclear analyses have been carried out to compare the differences in neutronics characteristics given by different calculation models,addressing neutron wall loading(NWL),tritium breeding ratio(TBR),fast neutron flux on inboard side and nuclear heating deposition on main in-vessel components.The impact of differences in modeling on the nuclear performance has been analyzed and summarized regarding the WCCB concept design.
在具有全局特性的蒙特卡罗输运精细计算的问题中,传统的MCNP(Monte Carlo N Particle Transport Code)局部减方差方法很难得到理想的计算结果,全局减方差方法(Global Variance Reduction,GVR)则是一种有效的解决方法。针对中国聚变工程试验反应堆(Chinese Fusion Engineering Testing Reactor,CFETR)的中子输运过程中减小全局方差的问题,将多种形式的GVR方法应用到柱状CFETR中子学模型的计算中。依据不同的中子分布信息,在算例中应用和对比了6种不同形式的GVR权窗,并对不同GVR方法的品质因子(FOMG)、标准差(σ)和有效计数率(Scoring)进行了分析。与AN(MCNPanalog method)相比,GVR方法的FOMG有很大的增长,误差在空间的分布也更加平缓,且具有更高的Scoring。在前人提出的全局减方差的基础上,在计算中应用一些新的GVR形式(能量、径迹数等),计算结果表明,基于中子通量的GVR方法的全局计算效率较AN提高了6.43倍。此外,基于中子能量的全局减方差方法也是一种可行的GVR应用形式,其与AN比较,计算效率提高了5.11倍。综上,基于中子通量的GVR方法具有最佳的全局减方差效果。
The water-cooled ceramic breeder (WCCB) blanket is one of the three candidates of China's Fusion Engineering Test Reactor (CFETR). The evaluation of the radioactivity and decay heat produced by neutrons for the in-vacuum vessel components is essential for the assessment of radioactive wastes and the safety of CFETR. The activation calculation of CFETR in-vacuum vessel components was carried out by using the Monte Carlo N-Particle Transport Code MCNP, IAEA Fusion Evaluated Nuclear Data Library FENDL2.1, and the nuclear inventory code FISPACT-2007 and corresponding EAF-2007 libraries. In these analyses, the three-dimensional (3-D) neutronics model was employed and the WCCB blanket, the divertor, and the shield were modeled in detail to provide the detailed spatial distribution of the neutron flux and energy spectra. Then the neutron flux, energy spectra and the materials specification were transferred to FISPACT for the activation calculation with an assumed irradiation scenario of CFETR. This paper presents the main results of the activation analysis to evaluate the radioactivity, the decay heat, the contact dose, and the waste classification of the radioactive materials. At the time of shutdown, the activity of the WCCB blanket is 1.88×1019 Bq and the specific activity, the decay heat and the contact dose rate are 1.7× 1013 Bq/kg, 3.05 MW, and 2.0 × 103 Sv/h respectively. After cooling for 100 years, 79% (4166.4 tons) radioactive wastes produced from the blanket, divertor, high temperature shield (HTS) and low temperature shield (LTS) need near surface disposal, while 21% (1112.3 tons) need geological disposal. According to results of the contact dose rate, all the components of the blanket, divertor, HTS and LTS could potentially be recycled after shutdown by using advanced remote handling equipment. In addition, the selection of Eurofer97 or RAFM for the divertor is better than that of SS316 because SS316 makes the activity of the divertor-body keep at a relatively high level.
Lithium ceramic pebble beds have been considered in the solid blanket design for fusion reactors.To characterize the fusion solid blanket thermal performance,studies of the effective thermal properties,i.e.the effective thermal conductivity and heat transfer coefficient,of the pebble beds are necessary.In this paper,a 3D computational fluid dynamics discrete element method(CFD-DEM) coupled numerical model was proposed to simulate heat transfer and thereby estimate the effective thermal properties.The DEM was applied to produce a geometric topology of a prototypical blanket pebble bed by directly simulating the contact state of each individual particle using basic interaction laws.Based on this geometric topology,a CFD model was built to analyze the temperature distribution and obtain the effective thermal properties.The current numerical model was shown to be in good agreement with the existing experimental data for effective thermal conductivity available in the literature.