Aiming at the characteristics of the poor steady ability, the short stable time and severe deformation behavior of weakly cemented soft surrounding rock around extraction roadway, a bolt–cable combined supporting technology was proposed. Numerical simulation was performed by using FLAC3 D software to study the effects of different supporting systems. The simulation result proves that those supporting systems have good practical values. Based on real-time monitoring and analysis of the deformation of surrounding rock and the stress of supporting structure, real time information of deformation of surrounding rock and stress state of supporting structure of extraction roadway within weakly cemented strata was obtained. Monitoring results show that large deformation and failure of surrounding rock of extraction roadway within weakly cemented strata can be effectively controlled by the bolt–cable combined supporting technology, which ensures the long-term stability and safety of surrounding rock and supporting structure.
Based on uniaxial compression experimental results on fractured sandstone with grouting and anchorage, we studied the strength and deformation properties, the failure model, crack formation and evolution laws of fractured sandstone under different conditions of anchorage. The experimental results show that the strength and elastic modulus of fractured sandstone with different fracture angles are significantly lower than those of intact sandstone. Compared with the fractured samples without anchorage,the peak strength, residual strength, peak and ultimate axial strain of fractured sandstone under different anchorage increase by 64.5–320.0%, 62.8–493.0%, and 31.6–181.4%, respectively. The number of bolts and degree of pre-stress has certain effects on the peak strength and failure model of fractured sandstone. The peak strength of fractured sandstone under different anchorage increases to some extent, and the failure model of fractured sandstone also transforms from tensile failure to tensile–shear mixed failure with the number of bolts. The pre-stress can restrain the formation and evolution process of tensile cracks, delay the failure process of fractured sandstone under anchorage and impel the transformation of failure model from brittle failure to plastic failure.