TiAl alloy bulk samples with the composition of Ti-45Al-5.5(Cr,Nb,B,Ta) (mole fraction, %) were prepared by high energy mechanical milling and spark plasma sintering (SPS) and then heat treatment. The microstructure and mechanical properties after heat treatment of TiAl alloy prepared by SPS at different temperatures were studied. The results showed that the morphology of high energy mechanically milled powder was irregular and the average grain size was about decades micrometers. X-ray diffraction analysis showed that the mechanically milled powder was composed of two phases of TiAl and Ti3Al. The main phase of TiAl and few phases of Ti3Al and TiB2 were observed in the SPS bulk samples of Ti-45Al-5.5(Cr,Nb,B,Ta) alloy. For samples sintered at 900 °C and 1000 °C, the microstructure was duplex structure with some fine equiaxed gamma grains and thin needly TiB2 phases. With the SPS temperature increasing from 900 °C to 1000 °C, the micro-hardness was changed little, the compression strength increased from 1812 MPa to 2275 MPa and the compression ratio increased from 22.66% to 25.59%. The fractography results showed that the compression fracture transform of the SPS Ti-45Al-5.5(Cr,Nb,B,Ta) alloy was rgranular rupture.
A fine-grained TiAl alloy with a composition of Ti-45Al-2Cr-2Nb-1B-0.5Ta-0.225Y (mole fraction, %) was prepared by double mechanical milling(DMM) and spark plasma sintering(SPS). The relationship among sintering temperature, microstructure and mechanical properties was studied. The results show that the morphology of double mechanical milled powder is regular with size in the range of 20-40 μm and mainly composed of TiAl and Ti3Al phases. The main phase TiAl and few phases Ti3Al, Ti2Al and TiB2 were observed in the SPSed alloys. For samples sintered at 900 ℃ the equiaxed crystal grain microstructure is achieved with size in the range of 100-200 nm. With increasing the SPS temperature from 900 ℃to 1000 ℃ the size of equiaxed crystal grain obviously increases, the microhardness decreases from HV658 to HV616, and the bending strength decreases from 781 MPa to 652 MPa. In the meantime, the compression fracture strength also decreases from 2769 MPa to 2669 MPa, and the strain to fracture in compression increases from 11.69% to 17.76%. On the base of analysis of fractographies, it shows that the compression fracture transform of the SPSed alloys is intergranular rupture.
TiAl alloys were produced by investment casting method combined with induction skull melting (ISM) technique. In situ scanning electron microscopy (SEM) was utilized to study the fracture characteristics and crack propagation of a notched investment cast TiAl specimens in tension under incremental loading conditions. The whole process of crack initiation, propagation and failure during tensile deformation was observed and characterized. The results show that the fracture mechanism was sensitive to not only the microcracks near the notched area but also lamellar orientation to loading axis. The high tensile stress leads to the new microcracks nucleate along lamellar interfaces of grains with favorable orientation when local stress intensity reaches the toughness threshold of the material. Thus, both plasticity and high tensile stress are required to cause notched TiAl failure.
A fine-grained TiAl alloy with the composition of Ti-43Al-9V was prepared by mechanical milling and spark plasma sintering(SPS).The relationship among sintering temperature,microstructure and mechanical properties was studied.The results show that the morphology of mechanical milling powder is regular with size in a range of 5-30 μm.Main phases of γ-TiAl,α2-Ti3Al and few B2 phase are observed in the SPS bulk samples.For samples sintered at 1150 °C,equiaxed crystal grain microstructure is achieved with size in a range of 300 nm-1 μm.With increasing SPS temperature to 1250 °C,the size of equiaxed crystal grains obviously increases,the microhardness decreases from HV592 to HV535,and the bending strength decreases from 605 to 219 MPa.Meantime,the compression fracture strength also decreases from 2601 to 1905 MPa,and the strain compression decreases from 28.95% to 12.09%.