We investigate the joint effects of phase decoherence, Dzyaloshinskii Moriya (DM) interaction and inhomogeneity of the external magnetic field (b) on dense coding in a two-qubit anisotropic Heisenberg XYZ spin chain. Analytical expressions are obtained for the dense coding capacity. It is found that valid dense coding is always possible with this model when the system is initially prepared in the maximum entangled state. Moreover, optimal dense coding can be implemented for this initial state as long as the mean spin-spin coupling constant J+ of the XY plane is larger than b and the DM interaction despite the intrinsic decoherence. Non-maximal entangled initial states are found to be undesirable for dense coding with this model.