The Ti electrode was deposited on the (0001) face of an n-type 4H-SiC substrate by magnetron sputtering. The effect of the electrode placement method during the annealing treatment on the contact property was carefully investigated. When the electrode was faced to the Si tray and annealed, it showed ohmic behavior, otherwise it showed a non-ohmic property. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and atomic force microscopy (AFM) were used to characterize the electrode phase, composition, thickness, and surface morphology. The additional silicon introduced from the Si tray played a key role in the formation of the ohmic contact on the Ti/4H-SiC contact.
We theoretically investigate terahertz(THz)emission and detection from h110i-oriented electro-optic(EO) crystals adapted for Yb-doped femtosecond pulse laser.According to the principles of phase-matching condition, the dispersion relation between optical velocity and THz pulse,THz absorption spectra, and coherence lengths of CdTe, GaP,and GaAs crystals below the phonon resonant frequency are calculated correspondingly. The optical rectification and EO sampling process of above crystals with the same thickness of0.1 mm are simulated. As a consequence, we found that the optimal emission frequency of CdTe is at 2.65 THz, however,it reaches 6.56 THz of GaAs and 4.77 THz of GaP. With the help of frequency response function, the calculated cut-off frequency of CdTe is only 3.45 THz, while GaAs and GaP achieve 7.15 and 6.37 THz correspondingly. Finally, the EO sampling sensitivity of GaAs is higher than CdTe and GaP when the crystal's thickness exceeds 1.58 mm. The strong THz absorption of CdTe saturates distinctly the EO sampling sensitivity with its thickness increasing.
The Pt/Si/Ta/Ti multilayer metal contacts on 4H-Si C are annealed in Ar atmosphere at 600°C-1100°C by a rapid thermal processor(RTP). The long-term thermal stability is evaluated by aging the annealed contact at 600°C in air. The contact's properties are determined by current-voltage measurement, and the specific contact resistance is calculated based on the transmission line model(TLM). Transmission electron microscope(TEM) and energy-dispersive x-ray spectrometry(EDX) are used to characterize the interface morphology, thickness, and composition. The results reveal that a higher annealing temperature is favorable for the formation of an Ohmic contact with a lower specific contact resistance, and causes the rapid degradation of the Ohmic contact in the aging process.