An extended interaction oscillator (EIO) generating 120 GHz wave in sub-terahertz waves is studied by using the three-dimensional electromagnetic simulation software CST and PIC codes. A rectangular reentrant coupled-cavity is proposed as the slow-wave structure of EIO. By CST, the circuit parameters including frequency-phase dispersion, interaction impedance and characteristic impedance are simulated and calculated. The operation mode of EIO is chosen very close to the point where βL = 2π with corresponding frequency 120 GHz, the beam voltage 12 kV and the dimensions of the cavity with the period 0.5mm, the height 3mm and the width 1.4mm. Simulation results of beam-wave interaction by PIC show that the exciting frequency is 120.85 GHz and output peak power 465 W with 12-period coupled-cavity with the perveance 0.17 μP. Simulation results indicate that the EIO has very wide range of the operation voltage.
The possibility of an electron beam exciting surface plasmons in conducting metal is discussed in this paper. A planar perfect-structure with subwavelength holes is proposed. The phenomenon that mimicking surface plasmon waves can be excited and amplified by an electron beam is proved theoretically and numerically. The mechanism of transmission through a subwavelength hole array is exploited to enhance the interaction between the electron beam and the mimicking surface plasmons.