The gas gain and energy resolution of single and double THGEM detectors (5 cm×5 cm effective area) with mini-rims (rim less than 10 um) were studied. The maximum gain was found to reach 5×103 and 2 × 105 for single and double THGEMs respectively, while the energy resolution for 5.9 keV X-rays varied from 18% to 28% for both single and double THGEM detectors of different hole sizes and thicknesses. Different combinations were also investigated of noble gases (argon, neon) mixed with a quantity of other gases (isobutane, methane) at atmospheric pressure.
A kind of thick GEM-like gaseous electron multiplier (THGEM), which is mechanically an expansion of the GEM with its various dimensions being enlarged, is studied. The leak current of THGEM plates is measured. The effective gain and energy resolution of a single THGEM are studied with a source of 55Fe, and the effective gain of the single THGEM versus the electric field strength in the induction region is investigated. The results show that the leak current of THGEM plates is less than 200 pA. In an atmospheric-pressure standard gas mixture, 8×103 effective gain and about 32% energy resolution can be reached for the single-THGEM detector.
The THGEM detector without and with a CsI has been tested successfully. The optimal parameters of THGEM have been determined from eight samples. The UV photoelectric effect of the CsI photocathode is observed. The changing tendency related to the extraction efficiency (εextr) versus the extraction electric field is measured, and several electric fields influencing the anode current are adjusted to adapt to the THGEM detector with a reflective CsI photocathode.
A micro-pattern gas detector named leak microstructure (LM) has been studied. A new chemical electrolytic technique is introduced to make perfect shaped LM needles with very sharp tips, and this method may be developed to make LM array detectors in batches. The experimental results are presented for both a single needle LM detector and a small LM array detector. The gas gain is up to 105 by calculation from the waveform. Good gain stability and uniformity are achieved. The light emission from the needle tip is also measured in Ar/CF4 (95/5) gas mixture. The result shows a promising application for imaging.