This paper focuses on investigating the issue of adaptive state-feedback control based on neural networks(NNs)for a class of high-order stochastic uncertain systems with unknown nonlinearities. By introducing the radial basis function neural network(RBFNN) approximation method, utilizing the backstepping method and choosing an approximate Lyapunov function, we construct an adaptive state-feedback controller which assures the closed-loop system to be mean square semi-global-uniformly ultimately bounded(M-SGUUB). A simulation example is shown to illustrate the effectiveness of the design scheme.
提出一种用于虹膜定位的差分进化算法(modified differential evolution,MDE).MDE和原始差分进化算法(differential evolution,DE)主要有3点不同:第一,MDE采用了基于混沌序列的尺度因子和基于均匀分布的交叉率,这有助于提高候选解的多样性;第二,MDE使用中心解来修正最差解的变异操作,这有助于提高候选解的质量;第三,MDE使用最好解来帮助受困解摆脱局部最优点.在搜索边缘前,两种有效的去噪方法被用来减少虹膜图像中噪声的影响.去噪后,再使用MDE和其他4种方法来进行虹膜定位.在中科院(Chinese Academy of Sciences Institute of Automation,CASIA)眼图数据库中选择200幅来自不同个体的虹膜图像来验证和比较MDE及其他4种方法的效率.实验结果表明,与其他4种方法相比,MDE使用更少的执行时间来定位瞳孔边缘和虹膜边缘.
In this paper, we investigate the problem of global stabilization for a general class of high-order and non-smoothly stabilizable nonlinear systems with both lower-order and higher-order growth conditions. The designed continuous state feedback controller is recursively constructed to guarantee the global strong stabilization of the closed-loop system.