Anticancer targets of cryptotanshinone were evaluated and rapidly forecasted with PharmMapper, a reverse pharmacophore-based screening platform, as well as drug target databases, including PDTD, DrugBank and TTD. The pathway analyses for the collection of anticancer targets screened were carried out based on the KEGG pathway database, followed by the forecast of potential pharmacological activities and pathways of the effects of cryptotanshinone, and verification of some of the targets screened using whole cell tests. The results showed that a total of eight targets with anticancer potential were screened, including MAP2K1, RARα, RXRα, PDK1, CHK1, AR, Ang-1 R, and Kif11. These targets are mainly related to four aspects of the cancer growth: the cell cycle, angiogenesis, apoptosis, and androgen receptor. The cell tests showed that cryptotanshinone can inhibit the viability of human hepatoma cells SMMC-7721, which is related to the reduction of expression of MAP2K1 mRNA. This method provides a strong clue for the study of the anticancer effects and mechanisms of action of cryptotanshinone in the future.
MTH1(mut T homolog1)是Mut T的同源酶,是一种核苷酸焦磷酸酶,主要参与DNA损伤修复过程,尤其在肿瘤细胞的DNA复制过程中发挥着重要角色。最新的研究表明,MTH1可以清除肿瘤细胞中受损DNA功能结构的氧化构件,使得肿瘤细胞继续分裂与增殖,从而维持肿瘤细胞的生存,而更为重要的是正常细胞不需要MTH1,因此,MTH1有可能只与异常的细胞生长密切相关,这使得MTH1作为治疗靶点成为人们关注的焦点。该文着重对MTH1与肿瘤关系最新的研究成果进行综述,探讨MTH1维持肿瘤生长的相关机制及其与肿瘤治疗的关系,为靶向MTH1治疗肿瘤提供新的思路,为肿瘤研究工作者提供重要参考。