Automatic kidney segmentation from abdominal CT images is a key step in computer-aided diagnosis for kidney CT as well as computeraided surgery. However, kidney segmentation from CT images is generally performed manually or semi-autornatically because of gray levels similarities of adjacent organs/tissues in abdominal CT images. This paper presents an efficient algorithm for segmenting kidney from serials of abdominal CT images. First, we extracted estimated kidney position (EKP) according to the statistical geometric location of kidney within the abdomen. Second, we analyzed the intensity distribution of EKP for several abdominal CT images and exploit an adaptive threshold searching algorithm to eliminate many other organs/tissues in the EKP. Finally, a novel region growing approach based on labeling is used to obtain the fine kidney regions. Experimental results are comparable to those of manual tracing radiologist and shown to be efficient.