Aim: To examine the expression and regulation of integral membrane protein 2b (Itm2b) in rat male reproductive tissues during sexual maturation and under different treatments by in situ hybridization. Methods: Testis, epididymis, and vas deferens were collected on days 1-70 to examine Itm2b expression during sexual maturation. To further examine the regulation of Itm2b, adult rats underwent surgical castration and cryptorchidism. Ethylene dimethane sulfonate and busulfan treatments were carried out to test the regulation of Itm2b after destruction of Leydig cells and germ cells. Results: In testis, Itm2b expression was moderately detected in the adluminal area of seminiferous cords on days 1-10, and detected at a low level in the spermatogonia on days 20 and 30. The Itm2b level was markedly increased in Leydig cells from day 20 to day 70. In epididymis and vas deferens, Itm2b was detected from neonate to adults, and the signal gradually increased in accordance with sexual maturation. Itm2b expression was significantly downregulated in epididymis and vas deferens of castrated rats, and strongly stimulated when castrated rats were treated with testosterone. Cryptorchidism led to a significant decline of Itm2b expression in testis and caput epididymis. Itm2b expression in epididymis and vas deferens was significantly decreased after the Leydig ceils were destroyed by ethylene dimethane sulfonate. Busulfan treatment produced no obvious change in Itm2b expression in epididymis or vas deferens. Conelusion: Our data suggested that Itm2b expression is upregulated by testosterone and might play a role in rat male reproduction.
Deivendran RengarajXiao-Huan LiangFei GaoWen-Bo DengNathaniel MillsZeng-Ming Yang
Asthenozoospermia (AS) is a common cause of human male infertility. In one study, more than 80% of the samples from infertile men had reduced sperm motility. Seminal plasma is a mixture of secretions from the testis, epididymis and several male accessory glands, including the prostate, seminal vesicles and Cowper's gland. Studies have shown that seminal plasma contains proteins that are important for sperm motility. To further explore the pathophysiological character of AS, we separated the seminal plasma proteins from AS patients and healthy donors using sodium dodecyl sulfate polyacrylamide gel electrophoresis and in-gel digestion, and then subjected the proteins to liquid chromatography-mass spectrometry (LC-MS/MS) analysis. A total of 741 proteins were identified in the seminal plasma, with a false discovery rate of 3.3%. Using spectral counting, we found that 45 proteins were threefold upregulated and 56 proteins were threefold downregulated in the AS group when compared with the control. Most of these proteins originated from the epididymis and prostate. This study identified a rich source of biomarker candidates for male infertility and indicates that functional abnormalities of the epididymis and prostate can contribute to AS. We identified D J-1--a protein that has been shown elsewhere to be involved in the control of oxidative stress (OS)-as a downregulated protein in AS seminal plasma. The levels of D J-1 in AS seminal plasma were about half of those in the control samples. In addition, the levels of reactive oxygen species were 3.3-fold higher in the AS samples than in the controls. Taken together, these data suggest that downregulation of DJ-1 is involved in OS in semen, and therefore affects the quality of the semen.
Jun WangJian WangHua-Rong ZhangHui-Juan ShiDuan MaHong-Xin ZhaoBiaoyang LinRun-Sheng Li