您的位置: 专家智库 > >

国家自然科学基金(10431040)

作品数:3 被引量:0H指数:0
相关作者:胡乃红裴玉峰更多>>
相关机构:华东师范大学更多>>
发文基金:国家自然科学基金上海市教育委员会重点学科基金国家教育部博士点基金更多>>
相关领域:理学更多>>

文献类型

  • 3篇中文期刊文章

领域

  • 3篇理学

主题

  • 1篇代数
  • 1篇形变
  • 1篇上圈
  • 1篇算子
  • 1篇注记
  • 1篇微分
  • 1篇微分算子
  • 1篇RANK
  • 1篇TYPE
  • 1篇CLASS
  • 1篇COHOMO...
  • 1篇DIRAC
  • 1篇GENERA...
  • 1篇GROUP
  • 1篇HOPF代数
  • 1篇METRIC
  • 1篇HOMOGE...

机构

  • 1篇华东师范大学

作者

  • 1篇裴玉峰
  • 1篇胡乃红

传媒

  • 1篇中国科学(A...
  • 1篇Chines...
  • 1篇Scienc...

年份

  • 1篇2008
  • 1篇2007
  • 1篇2006
3 条 记 录,以下是 1-3
排序方式:
Dirac cohomology of unitary representations of equal rank exceptional groups
2007年
In this paper, we consider the unitary representations of equal rank exceptional groups of type E with a regular lambda-lowest K-type and classify those unitary representations with the nonzero Dirac cohomology.
Fu-hai ZHUKe LIANG
A Class of Homogeneous Einstein Manifolds
2006年
A Riemannian manifold (M, g) is called Einstein manifold if its Ricci tensor satisfies r=c.g for some constant c. General existence results are hard to obtain, e.g., it is as yet unknown whether every compact manifold admits an Einstein metric. A natural approach is to impose additional homogeneous assumptions. M. Y. Wang and W. Ziller have got some results on compact homogeneous space G/H. They investigate standard homogeneous metrics, the metric induced by Killing form on G/H, and get some classification results. In this paper some more general homogeneous metrics on some homogeneous space G/H are studies, and a necessary and sufficient condition for this metric to be Einstein is given. The authors also give some examples of Einstein manifolds with non-standard homogeneous metrics.
Yifang KANGKe LIANG
关于双参数量子群的注记(Ⅰ)
2008年
借助于Euler型,给出了一类(对应于半单Lie代数的)双参数量子群的更为简便的定义方式,证明了所定义量子群的正部分在双参数满足适当条件下是互为2-上圈形变的,并给出了该正部分在Kashiwara意义下的斜微分算子实现.
胡乃红裴玉峰
关键词:HOPF代数
共1页<1>
聚类工具0