The concentrations of CH4 and SO42? in pore-water and the carbon isotope compositions of total dissolved inorganic (ΣCO2) and CH4 were de- termined for three coastal sedimentary cores col- lected from Qi’ao Island (Pearl River Estuary), southern China. Results show that methane concen- tration changes dramatically at the base of the sul- fate-reducing zone and sulfate concentration gradi- ents are linear for all stations. In addition, the carbon isotope of methane becomes heavier at the sul- fate-methane transition (SMT), which causes ΣCO2-δ 13C to become the minimum. The geo- chemical profiles of pore-water render indirect evi- dence for anaerobic oxidation of methane (AOM). Based on numerical modeling of AOM and sul- fate-reducing rates, the portion of total sulfate reduc- tion occurring via AOM is 9.0%, 84% and 45.5%, re- spectively, and the percentage of ΣCO2 added to the pore-water is 4.7%, 72.4% and 29.45% correspond- ingly for three sites. Furthermore, it is found that the methane concentration, methane diffusive flux and the depth of SMT are controlled by the quantity and quality of sedimentary organic matter incorporated into the sediments. The great amount of organic material is favorable for rapid depletion of sulfate via sedimentary organic matter degradation, and on the other hand, causes the increase of the methane flux in the SMT, which results in a portion of sulfate re-duction supported by AOM. Accordingly, the SMT was shifted towards the sediment surface.
Based on structural and mineralogical characteristics of four hydrothermal chimney samples collected by submersible Alvin, growth history and formation environment of hydro-thermal chimney at EPR 9―10°N are established. It is shown that there occur two types of hydrothermal chimney with different deposition environments at EPR 9―10°N according to dif-ferences in their shape, structure and mineral assemblage: type I chimney forms in an environ-ment with high temperature, low pH and strong reducing hydrothermal focus flow and type II chimney forms in a relatively low temperature, high pH and rich Zn hydrothermal environment. Growth of type I chimney begins with the formation of anhydrite. Subsequently deposition of Cu-Fe-Zn sulphide in various directions of chimneys decides the final structure of this type of chimney. According to observation and analysis of mineral assemblages, the formation process of type I chimney could be divided into three stages from early, middle to late. Changes of tem-perature and major chemical reaction type in the process of hydrothermal chimney formation are also deduced. Different from type I chimney, quenching crystalline of pyrite and/or crystalline of sphalerite provide the growth foundation of type II chimney in the early stage of chimney forma-tion.