The motion and the energy of electrons driven by the ponderomotive force in linearly polarized high-intensity laser standing wave fields are considered. The results show that there exists a threshold laser intensity, above which the motion of electrons incident parallel to the electric field of the laser standing waves undergoes a transition from regulation to chaos. We propose that the huge energy exchange between the electrons and the strong laser standing waves is triggered by inelastic scattering, which is related to the chaos patterns. It is shown that an electron's energy gain of tens of MeV can be realized for a laser intensity of 10^20 W/cm^2.
The influence of time-dependent polarization on attosecond pulse generation from an overdense plasma surface driven by laser pulse is discussed analytically and numerically. The results show that the frequency of controlling pulse controls the number and interval of the generated attosecond pulse, that the generation moment of the attosecond pulse is dominated by the phase difference between the controlling and driving pulses, and that the amplitude of the controlling pulse affects the intensity of the attosecond pulse. Using the method of time-dependent polarization, a "single" ultra-strong attosecond pulse with duration T ≈ 8.6 as and intensity I≈ 3.08 × 10^20 W.cm-2 can be generated.