The first-principle calculations were performed to investigate the structural,mechanical,electronic and thermal properties of the binary ductile intermetallic compound CeAg with B2(CsCl) structure.The calculated value of lattice constant a0 for CeAg with generalized gradient approximation is 3.713-,which is in better agreement with experimental data than local spin density approximation.The negative energy of formation implies that CeAg with B2 structure is thermodynamically stable phase.The greater separation between the d bands of Ce and Ag results in weaker bond hybridization of Ce d—Ag d,which prevents formation of directional covalent bonding.The three independent elastic constants(C11,C12 and C44) are derived and the bulk modulus,shear modulus,elastic modulus,anisotropy factor,and Poisson ratio are determined to be 57.6 GPa,15.8 GPa,43.4 GPa,3.15 and 0.374,respectively.The elastic constants meet all the mechanical stability criteria.The value of Pugh's criterion is 3.65.The ductility of CeAg is predicted if Pugh's criterion is greater than 1.75.Furthermore,the variations of volume,bulk modulus,heat capacity,and thermal expansion coefficient with temperature and/or pressure were calculated and discussed.
Single crystalline Bi2O3 nanosheets have been synthesized by the surfactant assisted solvothermal method, using oleic acid and sodium dodecyl benzene sulfonate (SDBS) as compound surfactants. The thickness of Bi2O3 nanosheets is 40--70 nm with a monoclinic crystal structure. High-resolution transmission electron microscopy observation reveals that ( 345 ) lattice plane of the single crystal is parallel to the surface of the nanosheets. The cooperative effect of oleic acid encapsulated SDBS is the key to form single crystalline a-Bi2O3 nanosheets with a preferred growth orientation. An obvious blue shift of the single crystalline Bi2O3 nanosheets with a preferred surface ( 34-5 ) is observed due to quantum confinement effects in thickness and optical anisotropy.